High Frequency PIN-Diode Switches for Radiometer Applications

Oliver Montes, Douglas E. Dawson, Pekka Kangaslahti, and Steven C. Reising*

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

*Microwave Systems Laboratory, Colorado State University, Fort Collins, CO

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.
Outline

1. Introduction
2. Description of Work
3. Design Topology
4. Switch Designs
5. Results
6. Summary
Introduction

- Dicke switched radiometers allow for correction of gain and noise figure fluctuations in components of receiver chain.
- Accomplished using a single-pole double-throw (SPDT) RF MMIC switch.
- Switches the input of the receiver between the signal from the antenna and a signal from a matched load internal to the radiometer.
Description of Work

- Microwave switches were designed to cover three frequency ranges of 80-105 GHz, 90-135 GHz, and 160-190 GHz
- Monolithic microwave integrated circuits (MMIC) were realized in microstrip and coplanar waveguide technology
- Fabricated using Northrop Grumman’s 75-μm thick InP MMIC PIN diode process
- PIN diodes used because of low insertion loss and fast switching speeds
- Variations of each SPDT design with PIN diode sizes ranging from 3 to 8 μm were fabricated
- To date, 80-105 GHz and 90-135 GHz switches have been tested; 160-190 GHz switches have not yet been tested
PIN diodes are used as switching elements

- Provide high impedance when reverse-biased because of relatively small junction capacitance of diode
- Provide low impedance path when forward-biased because of decreased junction resistance
Shunt PIN-diode SPDT Switch Implementation

- Forward-biased diode provides RF short to ground (OFF state)
- Reverse-biased diode provides high impedance to ground and does not affect RF signal (ON state)
Series PIN-diode SPDT Switch Implementation

- Reverse-biased diode provides high impedance RF path (OFF state)
- Forward-biased diode provides low impedance RF path (ON state)
Series-Shunt PIN-diode SPDT Switch Implementation

- Implements both series and shunt diode SPDT configurations together to maximize isolation
- Eliminates the need for quarter-wave transformer (reduces size)
- This configuration was used for SPDT switch designs being presented
Design Topology

SPDT Switch Circuit Schematic
Symmetric Design

- Microstrip design
- SiN 2-layer MIM capacitors for bypass and DC blocking capacitors
- NiCr thin-film process for resistors
- Radial stubs used to provide well-defined virtual RF shorts

Measured Performance

![Graph showing Insertion Loss, Isolation, Common Leg RL, and Antenna Leg RL over a frequency range of 80 to 110 GHz.](image)
Measured Results vs. Simulated Results

- Insertion Loss vs. Frequency (GHz)
- Isolation vs. Frequency (GHz)
- Antenna/Reference Leg Return Loss vs. Frequency (GHz)
- Common Leg Return Loss vs. Frequency (GHz)
Asymmetric Design

- Same technology as symmetric design (microstrip, SiN 2-layer MIM capacitors, etc.)
- Antenna and Common legs aligned and Reference leg at a 90° angle
- More practical implementation for radiometer receiver since “input” and “output” are aligned

Measured Performance

Asymmetric design variation with integrated 50-Ω reference termination

Insertion Loss

Common Leg RL (Integrated Ref. Load Version)

Isolation

Common Leg RL

Antenna Leg RL
Post-Fabrication On-Chip Tuning of Isolation

- Higher frequency measurements demonstrated isolation was optimized for higher frequency
- By increasing effective electrical length of shunt diode radial stubs, optimal isolation was lowered to frequency range of interest

Tuning ribbon added to shunt diode radial stub

Measured Performance

- Isolation (Un-tuned)
- Isolation (Tuned)
Symmetric Design

Same technology as 80-105 GHz design (microstrip, SiN 2-layer MIM capacitors, etc.)

Preliminary tuning of shunt diode radial stub demonstrates decrease in isolation optimal frequency

Measured Performance

- Insertion Loss
- Isolation
- Antenna Leg RL
- Common Leg RL

Frequency (GHz)

Loss (dB)
Symmetric Design

- Coplanar waveguide design
- SiN 2-layer MIM capacitors for bypass and DC blocking capacitors
- NiCr thin-film process for resistors

Simulated Performance

- Insertion Loss
- Common Leg RL
- Antenna Leg RL
- Isolation

160-185 GHz MMIC Switch
Results

<table>
<thead>
<tr>
<th>Switch</th>
<th>Insertion Loss</th>
<th>Return Loss</th>
<th>Isolation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-105 GHz</td>
<td><2 dB</td>
<td>>15 dB</td>
<td>>15 dB</td>
<td></td>
</tr>
<tr>
<td>80-105 GHz (Asymmetric)</td>
<td><2 dB</td>
<td>>18 dB</td>
<td>>15 dB</td>
<td>Isolation >20 dB from 85-103 GHz after on-chip tuning</td>
</tr>
<tr>
<td>90-135 GHz</td>
<td><2 dB</td>
<td>>15 dB</td>
<td>>8 dB</td>
<td></td>
</tr>
<tr>
<td>160-190 GHz</td>
<td><2 dB</td>
<td>>20 dB</td>
<td>>20 dB</td>
<td>Simulated Results Only</td>
</tr>
</tbody>
</table>
Summary

• Dicke switched radiometers allow for correction of gain and noise figure fluctuations in components of receiver chain after the switch

• RF switches were designed to cover three frequency ranges, 80-105 GHz, 90-135 GHz, and 160-190 GHz

• Realized as monolithic microwave integrated circuits (MMIC) using microstrip and coplanar waveguide technology

• To date, 80-105 GHz and 90-135 GHz switches have been tested; 160-190 GHz switches have not yet been tested
This work was supported by the NASA Earth Science Technology Advanced Component Technology ACT-08 Program led by Steven C. Reising of Colorado State University.

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the National Aeronautics and Space Administration.

The authors would like to acknowledge Kwok Loi and Augusto Gutierrez from NGST for the processing of the InP PIN MMIC circuits.

The authors would also like to acknowledge George Komar and Eduardo Torres-Martinez from the NASA Earth Science Technology Office for their support.
Thanks to NASA ESTO for their continued support!