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Outline

• Motivation

• Trade studies

• MAGI sensor concept

• Project status
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Project Background
• Scope of the MAGI IIP includes an airborne sensor demonstration 

and a space-based sensor concept design

• MAGI (Mineral And Gas Identifier) is the airborne demonstrator 
sensor designed to support a satellite sensor concept
– Operates in the thermal IR (7-12 micron) spectral region

• MAGI is a precursor to “MAGI-L” (MAGI-LEO) 
– Analyses performed on MAGI will be extrapolated into the MAGI-L 

concept as part of the IIP, including an assessment of space-qualified 
elements

• MAGI builds upon the ASTER concept to provide improved 
measurements and incorporate state-of-the art technology for future 
Earth-observing instruments
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Relevance to Decadal Study
• Multi-spectral satellite thermal IR sensors have been used in the 

following areas:
– Volcano monitoring

• Impending eruptions
• Gaseous and particulate effluents

– Rock and soil identification
– Surface temperature monitoring (drought and evapotranspiration studies, 

urban heat islands)

• MAGI-L will also be used to detect gas emission from large sources
– Volcano monitoring (sulfur dioxide)
– Pollution monitoring (ammonia from biomass burning and livestock 

operations, sulfur dioxide from power plants)
– Ozone depletion (methyl chloride from biomass burning)
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Additional Benefits of MAGI-L over ASTER
• More accurate pixel temperature and emissivity retrieval

– Use in-scene atmospheric compensation methods
– Detect “contaminating” thin cirrus at night, when SWIR cannot

• Improved discrimination between minerals
– Due to more spectral channels

• Improved discrimination of volcanic emissions
– Sulfur dioxide, and ash and sulfate particulates

• Detect smaller thermal anomalies
– Due to smaller pixel size

• Shorter revisit time
– Due to larger swath width
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Key MAGI Components
• Dyson spectrometer

– Small optical distortion at low f-numbers

• High frame rate HgCdTe focal plane array
– Any suitable detector material could be substituted as it becomes 

available

• Field-splitting mirror assembly
– Doubles the swath width (→ decreases revisit time)
– Provides redundancy

• Cryocooler for FPA and spectrometer housing
– Space qualified/available technology
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Mineral Mapping – Cuprite, NV
Dominant Endmember Distributions

> At 16 or fewer bands, the mineral mapping changes significantly
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Gas, Mineral and ISAC Studies Combined

> All the studies show an appreciable performance penalty in changing 
from 32 to 16 channels (0.19 to 0.38 µm sampling)
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Trade Study Summary

Study
Short 

Wavelength 
Cut-off

Long 
Wavelength 

Cut-off

Bandwidth 
(microns)

NEDT 
(oC)

GSD 
(m)

Gas 
Detection 7.2 12.01 ≤ 0.19 0.1 45

Mineral 
Detection 7.8 12.01 ≤ 0.19 — —

Atmos.   
Comp.

7.5 12.01 ≤ 0.25 — —

Cirrus 
Detection 7.0 — — — —

Summary 7.0 12.0 0.19 0.1 45

1 To minimize detector noise and maximize operability, keep this as low as possible.  
Analysis showed that in all cases, a 12-micron cut-off does not appreciably affect 
performance.

A mean bandwidth of 0.19 from 7 to 12 microns results in 28 spectral channels
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MAGI-L Specifications – Comparison to ASTER

• MAGI-L will use a 240 mm (9.5”) diameter telescope (similar to ASTER)

ASTER MAGI-L

No. Bands 5 28

GSD (m) 90 60

Swath 
Width (km) 60 200

NEDT (oC) 0.2 0.1
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MAGI-L Wavelength Bands
Comparison to ASTER, MODIS and proposed HyspIRI

• MAGI-L does not have preconceived notion of “best” wavelengths
• It will provide a unique test-bed to make that determination
• It does cover wavelengths of previous sensors to provide data continuity
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Satellite End-to-End Sensor Concept
TMA AFOCAL TELESCOPE, 6.3x

ENTRANCE PUPIL: 240mm∅

COLD STOP
(38mm dia)

REIMAGING LENS
EFL = 76mm

DUAL
SPECTROMETERS

CRYOSTAT
WINDOW

Entrance pupil/scan mirror

ORBITAL
MOTION

CROSS-TRACK
WHISKS
(200km)

spectrometer
slits

(31km each)

GSD
60m common to 

satellite 
and 

airborne 
sensors
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MAGI Airborne Sensor
• Build in July
• Flights in August

INS

Camera Electronics

Calibration Sources

Scanning Mirror 
(roll/pitch)

Stabilization 
Platform

Cryostat

Sensor Rack

Telescope Optics
Housing

Scanning Mirror
Electronics
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Cryostat Assembly

Sunpower
cryocooler (2)100°K flexible

conductive
link (FCL)

50°K FCL

Optics bench

Window (ZnSe)
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Optics Bench
• Structural parts are aluminum and fiberglass construction

Detector flex card

100°K anchor (2)

100°K shield

50°K detector/cryocooler
interface plate

100°K baseplate

Detector mount
assembly

G-10 isolator (3)

Spectrometer

Bipod G-10 isolator (3)

Baffle
Reimager

300°K baseplate
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Dyson Spectrometer
Manufactured by Corning Specialty Materials

• Predicted performance
– Grating: 97% max. efficiency in 1st order (9.0 μm), 72% min. (7.0 μm)
– Distortions: smile 0.025 pixels, keystone 0.035 pixels

rotate
90°

input slit 
assembly



17

0

2

4

6

8

10

12

14

16

18

20

30 40 50 60 70 80 90 100 110

He
at

  L
ift

 (W
)

Cold Tip Temperature (K)

manufacturer's curve

measured data

MAGI requirement

Cryocooler Testing – Sunpower Stirling CT Model

• Measured heat lift curve in MAGI test environment was lower than expected
• Performance insufficient for predicted detector cooling requirement

detector

optics bench

> CT cooler will work for optics bench, not for detector.  Use GT instead.

Heat Lift Measurements for 160W Input Power



18

Status of Project

• Received all optics and cryocooler parts

• Waiting on remainder of mechanical parts

• Cryocooler testing and thermal control software complete

• Software mostly complete

• Lab integration to begin in July

• Aircraft integration planned for August
• Flights planned over regions visited by The Aerospace Corporation’s 

Mako sensor (same GSD, higher spectral resolution)
– Salton Sea

– California Central Valley
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