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Project Background

® Scope of the MAGI IIP includes an airborne sensor demonstration
and a space-based sensor concept design

* MAGI (Mineral And Gas Identifier) is the airborne demonstrator
sensor designed to support a satellite sensor concept

— Operates in the thermal IR (7-12 micron) spectral region

* MAGI is a precursor to “MAGI-L” (MAGI-LEO)

— Analyses performed on MAGI will be extrapolated into the MAGI-L
concept as part of the IIP, including an assessment of space-qualified
elements

* MAGI builds upon the ASTER concept to provide improved
measurements and incorporate state-of-the art technology for future
Earth-observing instruments
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Relevance to Decadal Study

Multi-spectral satellite thermal IR sensors have been used in the
following areas:
— Volcano monitoring
* Impending eruptions
® Gaseous and particulate effluents
— Rock and soil identification

— Surface temperature monitoring (drought and evapotranspiration studies,
urban heat islands)

MAGI-L will also be used to detect gas emission from large sources

— Volcano monitoring (sulfur dioxide)

— Pollution monitoring (ammonia from biomass burning and livestock
operations, sulfur dioxide from power plants)

— Ozone depletion (methyl chloride from biomass burning)
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Additional Benefits of MAGI-L over ASTER

®* More accurate pixel temperature and emissivity retrieval
— Use in-scene atmospheric compensation methods
— Detect “contaminating” thin cirrus at night, when SWIR cannot

® |mproved discrimination between minerals
— Due to more spectral channels

® |mproved discrimination of volcanic emissions
— Sulfur dioxide, and ash and sulfate particulates

®* Detect smaller thermal anomalies
— Due to smaller pixel size

® Shorter revisit time
— Due to larger swath width
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Key MAGI Components

* Dyson spectrometer
— Small optical distortion at low f-numbers

* High frame rate HgCdTe focal plane array

— Any suitable detector material could be substituted as it becomes
available

* Field-splitting mirror assembly
— Doubles the swath width (— decreases revisit time)

— Provides redundancy

® Cryocooler for FPA and spectrometer housing
— Space qualified/available technology
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Mineral Mapping — Cuprite, NV

Dominant Endmember Distributions
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> At 16 or fewer bands, the mineral mapping changes significantly
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Gas, Mineral and ISAC Studies Combined
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> All the studies show an appreciable performance penalty in changing
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Trade Study Summary

Short Long :
Study Wavelength | Wavelength Bandmdth NEDT GSD
Cut-off Cut-off (microns) (°C) (m)
Gas : 7.2 12.01 <0.19 0.1 45
Detection
Mmerql 78 1201 <019 B B
Detection
Atmos.
7.5 12.01 <0.25 — _
Comp.
Cirrus
Detection 7.0 T — — —
Summary 7.0 12.0 0.19 0.1 45

1 To minimize detector noise and maximize operability, keep this as low as possible.
Analysis showed that in all cases, a 12-micron cut-off does not appreciably affect
performance.

A mean bandwidth of 0.19 from 7 to 12 microns results in 28 spectral channels
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MAGI-L Specifications — Comparison to ASTER

ASTER MAGI-L
No. Bands 5 28
GSD (m) 90 60
Wi?tﬁa(tlt]m) o0 200
NEDT (°C) 0.2 0.1

* MAGI-L will use a 240 mm (9.5”) diameter telescope (similar to ASTER)
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MAGI-L Wavelength Bands
Comparison to ASTER, MODIS and proposed HysplRI
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* MAGI-L does not have preconceived notion of “best” wavelengths
* It will provide a unique test-bed to make that determination
* |t does cover wavelengths of previous sensors to provide data continuity
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Satellite End-to-End Sensor Concept
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MAGI Airborne Sensor
® Build in July

* Flights in August / Camera Electronics

Calibration Sources

Stabilization

Platform \ )

Scanning Mirror
Electronics

Telescope Optics /

Housing

\ Sensor Rack

Cryostat Scanning Mirror
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Cryostat Assembly

Sunpower

100°K flexible cryocooler (2)

conductive
link (FCL)

50°K FCL

Optics bench

\ Window (ZnSe)
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Optics Bench

e Structural parts are aluminum and fiberglass construction

100°K anchor (2)

50°K detector/cryocooler

/ interface plate
N N

<~ assembly

Detector flex card

o Reimager
Baffle —

300°K baseplate
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Dyson Spectrometer
Manufactured by Corning Specialty Materials

* Predicted performance
— Grating: 97% max. efficiency in 15t order (9.0 um), 72% min. (7.0 ym)
— Distortions: smile 0.025 pixels, keystone 0.035 pixels

input slit
assembly
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Cryocooler Testing — Sunpower Stirling CT Model

Heat Lift Measurements for 160W Input Power
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®* Measured heat lift curve in MAGI test environment was lower than expected
* Performance insufficient for predicted detector cooling requirement

> CT cooler will work for optics bench, not for detector. Use GT instead.
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Status of Project

®* Received all optics and cryocooler parts

® Waiting on remainder of mechanical parts

® Cryocooler testing and thermal control software complete
® Software mostly complete

® Lab integration to begin in July

® Aircraft integration planned for August

* Flights planned over regions visited by The Aerospace Corporation’s
Mako sensor (same GSD, higher spectral resolution)

— Salton Sea

— California Central Valley
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