
A Moving Objects Database Infrastructure
for Hurricane Research:

Data Integration and Complex Object Management
Markus Schneider1, Shen-Shyang Ho2, Malvika Agrawal1,

Tao Chen1, Hechen Liu1, Ganesh Viswanathan1

1Department of Computer & 2Center for Automated Research
Information Science & Engineering University of Maryland

University of Florida College Park, MD 20742
Gainesville, FL 32611

Abstract—Current web-based weather event and satellite data
portals provide large amounts of data over a historical timeline.
However, users of these portals often get access to data only
through limited, pre-defined queries based on a strict set of
criteria and event trajectories. Desirable capabilities, such as
spatial-temporal analysis, efficient satellite data retrieval, and
ad-hoc queries on trajectory data, are not available in these
information systems and data archives. In this paper, we describe
our current work on and progress in the development of a
sophisticated moving objects database infrastructure designed
primarily to allow ad-hoc querying of dynamic atmospheric
events (e.g., hurricanes and storm systems) and the efficient
retrieval of satellite (e.g, QuikSCAT, TRMM) measurements.
In particular, we describe our progress in the integration of
tropical cyclone event data and satellite measurements from
different sources into a single moving objects database system
for scientific users to perform ad-hoc queries and sophisticated
spatiotemporal analysis. Moreover, we describe how a user can
remotely connect her personal analysis software to the database
system to perform flexible querying on tropical cyclone best track
data and retrieve the associated satellite measurements. Finally,
we show how complex objects like hurricane trajectories and
massive satellite sensor trajectories with measurements can be
effectively stored and handled in a database context using our
novel iBLOB (Intelligent Binary Large Objects) concept and data
structure.

I. INTRODUCTION

Weather event related information like hurricane best track
data and the satellite data are currently maintained by various
agencies in rather diverse file formats. The distribution of data
repositories and the incompatibility of data formats lead to
inconsistency among data, and more importantly, make the
retrieval, combination, and analysis of data across different
sources rather complex and inefficient. The web-based weather
event information portals, data archives, and forecast services
provide excellent subsetting and visualizations of weather
events and satellite sensor measurements. However, they are
restricted to certain data sources, and they provide only lim-
ited, simple and hard-coded query, retrieval, and analysis func-
tionalities. On the other hand, database technologies support
consistent data storage, efficient data retrieval, data indexing,

ad-hoc queries, and complex analysis like aggregations. Thus,
to bring database technology into handling weather event
information is beneficial. The main objective of our project is
to provide the NASA workforce with previously unavailable
database management, analysis, and query capabilities that
will advance the research and understanding of dynamic
weather events and be based on weather data derived from
the NASA mission sensor measurements.

In this paper, we describe our system from two perspectives,
the data integration and the system architecture. From the data
integration perspective, we describe the hurricane data integra-
tion from the various sources, the various normalization steps,
and the construction of a moving objects database (MOD). We
particularly describe the challenge how the terabyte scale data
is properly migrated from HDF5 files into databases, and how
we design the schema and organize the data with indexes for
efficient spatial and temporal range queries. From the system
architecture perspective, we describe in detail our system
components which are the Moving Object Software Library
(MOSL) and the Spatiotemporal Query Language (STQL).
Further, we include a discussion about handling complex
application objects in databases and our generic solution called
iBLOB .

The outline of this paper is as follows. Section II reviews
related work. In Section III, we outline the application and
system objectives of our project. In Section IV, we describe
the data integration and the main components of our system
and their implementation. In Section V, we describe a MAT-
LAB based application that is driven by our moving object
database query output. Finally, in Section VI, we draw some
conclusions and provide an outlook to our future work.

II. RELATED WORK

Our objective is to have a comprehensive moving objects
database system that provides unified representations and
rich functionalities for large amounts of tropical cyclone and
hurricane data from various sources. However, the way how
the hurricane data are currently handled is far away from

this goal. In this section, we explore the hurricane data from
various data sources (Section II-A), review the approaches to
handling complex objects in traditional, standard databases
(Section II-B), and describe our concept of moving objects
databases (Section II-C).

A. Hurricane Data Sources

The hurricane data in which we are interested in our project
falls into the two data categories of cyclone best track data
and satellite data.

Three major agencies collect cyclone best track data, the
National Hurricane Center (NHC), the NOAA Hurricane
Research Division, and the Joint Typhoon Warning Center
(JTWC). Data from NHC and JTWC are collected from
satellites every 6 hours. The data from NHC relates to the
North Atlantic and Eastern Pacific areas, while the data from
JTWC refers to the southern hemisphere, the North Atlantic
Ocean, and the Northwestern Pacific area. The best track data
from NOAA is derived from center fixes (i.e., the location
of the center of a tropical cyclone), which are obtained by
flying aircraft over a hurricane. The flight frequency affects
the amount of data for each hurricane. Data from NOAA
complements the hurricane track data from NHC and JTWC,
and therefore can reflect erratic motion of the hurricanes.

Every agency maintains their own storage for the cyclone
data, mainly in files. Different file formats are used for storing
cyclone data in different agencies. NHC maintains so-called
hurricane best track files for cyclone data, which is usually
referred to as the HURDAT format. Center locations (latitude
and longitude in tenths of degrees) and intensities (surface
wind speeds in knots and central pressures in millibars) are
recorded every six hours. Cyclone data in NOAA is stored
in totally different formats like USAF and HSA. Every named
hurricane has a center fix file and a track file. The latitude and
longitude positions are output every two minutes to make the
track file. As a result, the variety of data formats causes the
inconsistency among cyclone data from various sources, and
makes querying and combining cyclone data across different
agencies rather difficult.

The other data category is satellite data. One can imagine
a satellite data file as a sequence of snapshots of a moving
object obtained from an orbiting satellite. The data type design
for satellite data should be independent of a satellite mission.
For satellite moving objects, we consider Level 2B wind field
data from the QuikSCAT satellite and Level 2 precipitation
data from the TRMM satellite.

The QuikSCAT (Quick Scatterometer) mission provides an
important high quality ocean wind data set. The specialized
microwave radar on the QuikSCAT satellite measures wind
speed and direction under all weather and cloud conditions
over Earth oceans. Near real-time wind data is available to the
weather forecasting agencies from NOAA within three hours
of observation. The Tropical Rainfall Measurement Mission
(TRMM) is a joint mission between NASA and the Japan
Aerospace Exploration Agency (JAXA) designed to monitor
and study rainfall.

Data captured by these two satellite missions are stored in
the same format called Hierarchical Data Format (HDF5).
HDF5 is a data model, library, and file format for storing and
managing scientific data. It supports an unlimited variety of
data types and is designed for flexible and efficient I/O and for
high volume and complex data. However, it does not provide
ad-hoc query support for the data stored. Thus, searching for
data that satisfies customized criteria is not possible in HDF5.

Therefore, a database system is a perfect choice for over-
coming these issues. Moreover, with its built-in features
like data abstraction, concurrency control, transaction man-
agement, and multi-user access control, a database system
can support hurricane applications much better than a file
management system.

B. Approaches to Handling Complex Structured Application
Objects in Databases

Traditional database management systems (DBMSs) are
well suited to store and manage large, unstructured alphanu-
meric data. However, they offer very little support to handle
large, structured application objects (such as spatial and spa-
tiotemporal data) at a high abstraction level and to implement
operations on them. Binary large objects (BLOBs) are the
only means to store such complex objects. However, BLOBs
represent them as low-level, binary strings and do not preserve
their structure. As a result, this internal database solution turns
out to be unsatisfactory.

As a result, most applications involving complex objects use
one of two architectures to incorporate support for complex
objects in databases. The first approach involves a layered
architecture as shown in Figure 1a, in which a middleware,
which handles complex application objects, is clearly sepa-
rated from the application front-end, which provides services
and analysis methods to its users, and from the relational
database management system, which physically stores only
the underlying primitive data in traditional relational tables.
This approach has two main drawbacks. First, the application
developer has to implement the middleware so that it is suit-
able enough to handle complex objects and support efficient
operations on them. Second, all the benefits from the relational
database technology get lost.

A largely accepted approach is to model and implement
complex data as abstract data types (ADTs) in a type system,
or algebra, which are then embedded into an extensible DBMS
and its query language. This forms the basis of the second
integrated architecture (Figure 1b), where the applications
directly interact with the extended database system and use the
ADTs as attribute data types in a database schema. However
the ADTs have to be implemented using BLOBs for internal
storage. Thus the information about the complex structure of
an application object is not maintained at the database level.

We have developed a unique solution to this problem by
supplying a novel extension to the integrated architecture ap-
proach, and by providing type system implementers with a high
level access to complex structured objects. Our generalized
framework (Figure 1c) consists of two components, the type

Application 1 Application n

Extensible DBMS

ADT 1

iBLOB

Unstructured BLOB

Type Structure Specification

. . .
. . .

. . . ADT m

(a) (b) (c)
Fig. 1. The layered architecture (a), the integrated architecture (b), and our solution (c).

structure specification (TSS) and the intelligent BLOB (iBLOB)
concept [1]. The TSS consists of algebraic expressions that
are used by type system implementers to specify the internal
hierarchy of the abstract data type. It is later used as metadata
to identify the semantic meaning of each structure component.
Further, as part of the TSS, we provide a set of high-level
functions as interfaces for type system implementers to create,
access, or manipulate data at the component level. To support
the corresponding interfaces, we propose a generic storage
method called intelligent BLOB (iBLOB), which is a structured
binary array built on BLOBs but especially maintains the hier-
archical information. It is “intelligent” because, unlike BLOBs,
it understands the structure of the application object stored and
supports fast access, insertion, and update to components at
any level in the object hierarchy.

TSS and iBLOBs together enable an easy implementation
of complex ADTs, including the spatiotemporal data types
for moving points, moving lines, and moving regions. They
bring back the focus on understanding the semantics of such
objects and on performing scientific analysis. This is the case
because type system implementers are released from the task
of interpreting the logical semantics of binary unstructured
data, and the component level access is natively supported by
the underlying iBLOB.

C. Moving Objects Databases

The idea behind moving objects databases (MOD) [2], [3],
[4], [5], [6], [7] is to provide a system capable of representing
moving entities in DBMSs and being able to ask queries
about them. Moving entities could be moving points such as
people, animals, and all kinds of vehicles like cars, trucks, air
planes, ships, where usually only the time-dependent position
in space is relevant but not the spatial extent. Moving entities
with a spatial extent, for example, hurricanes, fires, oil spills,
epidemic diseases, could be characterized as moving regions.
Similarly, the moving front of a wild-fire or an army can be
described by a moving line. Such entities with a continuous,
spatiotemporal variation (in position, extent, and/or shape) are
called moving objects. Since databases offer many advanced
features such as transaction control, security and backup, and
an SQL query interface for data management and retrieval, the

integration of moving objects into databases can help leverage
existing DBMS technology to enable flexible querying of
complex moving objects.

III. OBJECTIVES

We discuss the objectives of our project from an application
standpoint in Section III-A and from a system standpoint in
Section III-B.

A. Application Objectives

The primary application objective of our technology is to
support accurate and efficient ad-hoc query and retrieval of
Earth science satellite sensor data for dynamic atmospheric
events such as tropical cyclones. This is relevant to NASA
missions and supports existing NASA Earth Observing mis-
sions such as AIRS, Calipso, CERES, Cloudsat, MODIS,
QuikSCAT, and TRMM that measure dynamic processes. To
support our objective, we have focused on the following
aspects of research and system development.

1) Providing tools to facilitate efficient collection, storage,
and management of “best track” and satellite data about
tropical storm events. Such data sets range from a few
megabytes to many terabytes, and can be in simple
text files (flat files) or encoded into complex scientific
formats such as HDF, NetCDF etc. as described in
Section II-A.

2) Providing tools for ad-hoc dynamic event query and
data retrieval. Such tools will allow scientists to perform
flexible query and retrieval of satellite data for statistical
analysis.

3) Supporting scientific analysis of retrieved satellite mea-
surements. Novel statistical composite analysis tools
will be developed and incorporated along with existing
technology to assist scientists in justifying hypotheses
and to facilitate knowledge discovery and data mining.

One of the design goals of our technology is to make
it generic so that the solution can be easily incorporated
into existing information gathering and analysis systems as
well as systems supporting future missions. The core of the
moving objects infrastructure we are developing is mission-
independent and written at several levels of abstraction for

different levels of users, from an analyst view to a system
developer view. Overall, this will help reduce implementation
costs related to future missions while providing an efficient
and uniform basis for data collection, integration, querying and
complex analysis. In Section IV we describe our approach to
achieve this objective.

B. System Objectives
The system objectives describe the goals of the project from

a system and software architecture standpoint and include
three components: (i) the Moving Objects Database (MOD),
(ii) the Moving Objects Software Library (MOSL), and (iii)
the Spatiotemporal Query Language (STQL).

From an application perspective, the moving objects data-
base (MOD) that we are going to create is supposed to keep
tropical cyclone and hurricane data provided by public sources
and web sites in a centralized repository and make them
available for querying to decision makers and application
scientists. From a system perspective, it is a full-fledged
database with additional support for spatial and spatiotemporal
data in its data model and query language. In order to be able
to add new functionality, we have the important requirement
that a database system (DBMS) must be extensible.

From an application perspective, the Moving Objects Soft-
ware Library (MOSL) provides the functionality in terms of
spatiotemporal data types, operations, and predicates that can
be deployed by decision makers and scientists in ad hoc
queries and in database application programs (written in C++,
Java, Matlab, etc.) to retrieve and derive tropical cyclone
data. For that purpose, from a system perspective, MOSL
provides a system of spatiotemporal data types together with
a large number of spatiotemporal operations (e.g., Intersec-
tion, Union, Difference) and spatiotemporal predicates (e.g.,
Inside, Meet, Disjoint, Overlaps; Enters, Leaves, Crosses, By-
passes). A detailed description of the moving objects database
technology can be found in [5]. It leads to many further
scientific publications on this topic. In particular, MOSL
provides historical spatiotemporal data types named hmpoint,
hmline, and hmregion which can be integrated as attribute data
types into extensible databases in a database-independent and
application-neutral manner.

From an application perspective, the Spatiotemporal Query
Language (STQL) provides the communication interface be-
tween the moving objects database for tropical cyclone data
and the decision maker and/or scientist. This textual language
enables users to pose ad hoc spatiotemporal queries on moving
objects in general and on tropical cyclone data in particular
and to obtain immediate response. Further, it is supposed to
retrieve satellite data based on user queries.

All three components are to be integrated into extensible
database systems. This leads to the planned system architecture
shown in Figure 2. The components in red indicate the new
components and their embedding into available DBMS.

IV. SYSTEM DESIGN AND INTEGRATION

In this section, we elaborate our system design and inte-
gration from two perspectives, the data integration and the

Retrieve information

from relevant

agencies/centers

Web-based spatiotemporal

query/request system

Non-scientist Decision

Makers, Earth Science

Researchers

Historical satellite

data product
Moving Objects Database

Near real-time satellite

data product

Spatiotemporal query

model/engine for STQLDBMSk

Moving Objects Software

Library (MOSL)

Satellite image

representation

Fig. 2. The planned system architecture.

system architecture. Section IV-A introduces the steps that are
taken for integrating tropical cyclone data into our moving
object databases (MOD). Section IV-B presents our system
architecture in detail.

A. System Components for Integrating Tropical Cyclone Data
into the Moving Objects Database

The original hurricane data from varies sources are stored in
plain text or complex file formats such as HDF. However, such
kind of storage is neither effective nor efficient for users to
perform queries on the movement of hurricanes. For example,
the original QuickSCAT data is stored in tens of thousands of
HDF files which are differentiated by time range, i.e., each
HDF file stores the scanning result of a satellite in about two
hours. Hence, it is only possible to perform queries within
one HDF file each time by a particular application program.
It would be much more beneficial to extract the data from
the HDF files and populate it into a database. A query like
“Find all time intervals between date 1 and date 2 when the
wind speed exceeds 50 m/s at the location (x, y)” cannot be
answered efficiently. Instead, users will need to find all HDF
files between date 1 and date 2, and extract the data from all
the files, filter the data by the condition of the query in each
file, and union all results in the end. Therefore, an alternative
approach is needed, which will enable the users to perform
such query only once and get the correct result they want
immediately. Our approach extracts the hurricane data from
the original data sources and store them in the moving objects
database. The users are then able to query hurricane data in
the manner of spatiotemporal data types for moving objects.
We call this task data integration.

There are three steps in the data integration process, as
illustrated in Figure 3. In the first step, we extract the original
data from the five different hurricane data sources, and store
them into a relational database. We do not filter any data
but store exactly what exists in the original hurricane data
files. However, if a file data format is hierarchical like HDF,
we have to flatten data hierarchies before we store the data

Fig. 3. An illustration of the various steps involved in hurricane data
integration and MOD development

into a relational table. For each data source, we create a
large table to hold all fields. In the second step, we perform
a cleaning process. We set up data dependencies, carefully
design the database schema by performing a normalization
step to hold the cleaned data, filter unrelated data, and remove
redundant data. After the second step, the data is still stored in
a relational database but the original database size is reduced.
In the third step, we convert the cleaned spatiotemporal data
into moving objects of the spatiotemporal data types and store
them into the moving objects database. We provide spatial and
spatiotemporal data constructors. The moving objects database
supports spatial data types such as point, line, and region as
well as spatiotemporal data types such as hmpoint, hmline, and
hmregion for historical moving points, historical moving lines,
and historical moving regions. In addition, we provide a data
type hmreal for historical moving real data. For example, the
eye (trajectory) of a hurricane can be stored as a value of the
type hmpoint, and the time-varying wind speed of a hurricane
can be stored as a value of the type hmreal.

There are some challenges in the data integration process.
The first challenge is the complexity of the HDF files. The
original QuickSCAT and TRMM data are stored in HDF
format, which cannot be extracted directly. We solve this
problem with the help of the Java API “hdf-java” provided
by the HDF group. The hdf-java software package helps us
read the contents of the HDF files. We store the data into
intermediate text files and make the Oracle loader to load
the text files into tables. The second challenge is how to
query the large satellite data tables. Since each of the satellite
tables occupies several terabytes, we must find an efficient
way to query such big amounts of data. For this purpose,
we build spatial and temporal indexes on the tables. We
also create partitions of tables and organize them by time
range so that a query on a specific time instance or period is
performed on a small number of partitions only, and time range
queries extending over different partitions can be performed
in parallel.

Extensible DBMS (Oracle 11g)

Moving Objects Software Library (MOSL)Spatiotemporal Query

Language (STQL)

Register Spatiotemporal

Functions and Predicates

Register Spatiotemporal

Data Types

Calling Interface

between STQL

and MOSL STAL

SPAL2D

RGP2D

Data Types and

Operations

Generic Data Access Portal

BLOB

R/W

Topological

Predicates

Predicates and Functions

Aggregate

Functions
...

Metric

Functions

Directional

Predicates
...

Fig. 4. A more fine-grained architecture for MOSL.

B. System Architecture for Storing and Retrieving Complex
Structured Application Objects in Moving Objects Databases

The three major components in our system are the Mov-
ing Objects Database (MOD), the Moving Objects Software
Library (MOSL), and the Spatiotemporal Query Language
(STQL). In Section IV-A we have introduced the system com-
ponent MOD and described the steps to integrate various data
sources into the MOD. In this section, we introduce in detail
the other two components. The overall system architecture
is presented in Figure 4, which also shows the connections
between different components.

The basis of our system is an extensible DBMS with an
interface for new user defined data types (UDTs) and user
defined functions (UDFs), and a storage type (BLOB) that is
suitable for holding large application objects with user defined
complex structures. We have explored the commercial and
public domain databases and decided to take Oracle 11g as
the underlying extensible DBMS for the implementation of
our system.

The first step is to include the Moving Objects Software
Library into Oracle. The implementation of the MOSL can
be further divided into three components, which are the type
system implementation, the generic data access portal, and
the BLOB access interface. Figure 4 presents the three major
components of the MOSL.

The type system implementation component refers to the
implementation of spatial and spatiotemporal data types like
regions and moving points, and the necessary operations for
manipulating the data stored. Major packages that implement
the data types and operations are the Spatiotemporal Algebra
(STAL) package, the Spatial Algebra 2D (SPAL2D) package,
and the Robust Geometric Primitives 2D (RGP2D) package. In
addition to the data type packages, we also include packages
that contain the implementations of spatial and spatiotemporal
predicates and functions into the MOSL. The predicates and
functions that are implemented in our system are topological
predicates like is cross and exist prior, directional predi-
cates like exist northeast and exist west, metric functions like
getLifeTime, aggregate functions like avgWindSpeed, and other
functions like atInstance.

The type system implementation is a rather high level
implementation whose focus is on the design of internal
data structures of application objects and on the design of

Type Structure Specification (TSS) Interface

Type Structure Specification File: *.xml

create(); get(path); set(path,

Generic Data Access Interface (GDAI)

iBLOB(); locateGloble(); locate(); insert();

Generic BLOB Access Interface for major DBMS

implemented with

on disk BLOB (Oracle/Postgres/

data flow

(frequent R/W)

data flow

(one time R/W)

Implementation

Implementation

implementation

switch

memBLOB Interface

Implementation

BLOB Interface iBLOB Interface

in-memory BLOB

Implementation

memiBLOB Interface

Implementation

in-memory iBLOB

Implementation

implemented with

implemented with

data flow

(one time R/W)

data flow

(frequent R/W)

Generic Data Access Portal

Fig. 5. Detailed flow chart of the implementation of the generic data access
portal.

efficient algorithms for operations. On the other hand, the
actual data of different types have to be stored in BLOBs
as the only DBMS data type for storing large objects of
varying representation length. They are accessed through the
functions provided by the BLOB access interface. The BLOB
access interface supports byte level data access and does not
recognize the objects stored. Thus, it is a rather low level
implementation. In order to free the high level type system
implementation from the direct low level byte manipulation,
we introduce an additional component called the Generic Data
Access Portal (component in the dashed box of Figure 4) that
lies between the type system implementation and the BLOB
access interface and abstracts from low level details in BLOBs.

A detailed implementation flow chart of the generic data
access portal is shown in Figure 5. The generic data access
portal can be divided into three components with decreasing
closeness to the type system: the Type Structure Specification
Interface (TSS), the Generic Data Access Interface (GDAI),
and the various implementations of a structured BLOB. We
take a bottom up fashion to explain these components in detail.

From an implementation perspective, the direct interaction
with a BLOB involves byte level manipulation and is a rather
tedious task. Further, complex objects like regions and moving
points are highly structured objects, and the implementation
of functions and operations usually takes advantage of such
structures. Thus, there is a gap between the high-level struc-
tured objects and the low-level unstructured BLOBs. In order
to bridge this gap, we have designed a data structure called
the Intelligent Binary Large Object (iBLOB). In general, the
iBLOB is a structured BLOB that provides higher level data
access methods (compared to BLOBs) that allow users to
retrieve, insert, and update objects at the component level.
For example, instead of manually locating the starting byte

of a segment that belongs to a region, and instead of reading
the segment byte by byte, one can load the segment directly
from the region by using an iBLOB. We implement different
versions of an iBLOB due to efficiency and scalability issues.
For applications that involve only small size objects that fit
into main memory, a main memory iBLOB version works best
in terms of efficiency. However, for applications that involve
large size objects that do not fit into main memory, loading
the entire object into main memory fails. Hence, functionalities
that can load only needed components into main memory are
required. As a result, a scalable on-disk iBLOB works best.
To handle all different implementations of the iBLOB and
to provide users a generic interface for accessing them, the
the Generic Data Access Interface (GDAI) is added for this
purpose. However, the GDAI is still closer to the underlying
storage system, the iBLOB, and it provides the same interface
for the implementation of different type systems. Thus, the
type system implementor might still find it not intuitive to
use. This is where the Type Structure Specification Interface
(TSS) comes into play.

The Type Structure Specification Interface (TSS) is closest
to the type system, and it provides the interface for the
implementation of any type system. The type system im-
plementor can use a simple grammar provided by TSS to
describe the designed representation structure of a data type,
and the TSS translates the description and makes calls to the
underlying GDAI functions to properly organize the storage
of the data. Therefore, it is like a wrapper around the GDAI
that provides functions that are more meaningful to the type
system implementor.

Beside the MOSL, another important component is the
Spatiotemporal Query Language (STQL) that provides an SQL
like query language for spatial and spatiotemporal data. In this
component, we register data types and the functions to the
DBMS and create links between the MOSL and the registered
types and functions. The implementation of the STQL is very
specific to the underlying DBMS because different DBMSs
have different mechanisms for registering user defined types
and user defined functions.

V. AN APPLICATION DRIVEN BY HURRICANE DATABASE
QUERY OUTPUT

A major strength of our moving objects database infras-
tructure is that it is an extension to existing, well-established
database systems (e.g. Oracle, PostgreSQL). Hence, ODBC
(Open Database Connectivity API) or JDBC (Java Database
Connectivity API) drivers can be easily used to connect and
communicate with our hurricane database server.

In this section, we demonstrate a Matlab implementation
of a satellite data retrieval and subseting application driven
by query output from our hurricane database (see Figure 6)
focusing on the database connection and query. The data
retrieval and subseting functionalities are discussed in [8], and
the detailed algorithms are described in [9].

The Matlab-based satellite data retrieval component is con-
nected to the hurricane database using the command

HDF satellite

data files

Tropical Cyclone

Database (North

Atlantic and East

Pacific, 1970-2009)

C
O

N
N

E
C

T
IO

N
:

D
ri

v
er

:
o

ra
cl

e.
jd

b
c.

O
ra

cl
eD

ri
v

er

U
R

L
:

jd
b

c:
o

ra
cl

e:
th

in
:@

p
h

o
en

ix
.c

is
e.

u
fl

.e
d

u
:1

5
2

1
:o

rc
l

U
se

rn
a

m
e:

 X
X

X

P
a

ss
w

o
rd

:
X

X
X

X
X

User - MATLAB Client

Search

Data Retrieval and Subset

QuikSCAT/TRMM

 Trajectory & HDF

file Index

(2000-2009)

User Data Query

ftp

Query

Fig. 6. Satellite data retrieval and subseting software driven by Hurricane
database query output.

conn = database(’Database’,
’username’,
’password’,
’oracle.jdbc.OracleDriver’,
’jdbc:oracle:thin:
@phoenix.cise.ufl.edu:
1521:orcl’)

from the Matlab Database Toolbox.
After the software is successfully connected to the database,

we execute the STQL query for the database connection conn
with the query output stored in the cell array cur.

cur = exec(conn,
[’SELECT m1.storm_name

FROM tropical_cyclone m1,
tropical_cyclone m2

WHERE exist_overlap(m1.track, m2.track) = 1
AND m2.name = NATE’]);

In the above STQL query, all tropical cyclones that occurred
during the life time (computed by the spatiotemporal predicate
“exist overlap”) of Hurricane Nate in the North Atlantic
Ocean in 2005 will be stored in the cell array cur. The
trajectories corresponding to the tropical cyclone names stored
in cur will be used by the software to retrieve satellite data.

Another more sophisticated STQL query is as follows.

cur = exec(conn,
[’SELECT m.storm_name

FROM STBL_USMAP r,
MTBL_NHC_BESTTRACKS m

WHERE r.state_name= Maryland AND
is_cross(m.trajectory,r.geoshape) = 1
AND m.start_date >=

to_date(01-JAN-2000)’]);

In this query, all tropical cyclones that crossed (computed
by the spatial predicate “is cross”) Maryland State between
1 January 2000 and 31 December 2009 (currently, we have
tropical cyclone data from 1 January 1970 to 31 December
2009) is stored in cur.

Using the satellite data retrieval and subseting algorithms
described in [9], we performed a QuikSCAT L2B satellite

Fig. 7. Performance for multiple tropical cyclone QuikSCAT data retrieval
driven by the STQL query “Find all tropical cyclones that crossed Maryland
State between 2000 and 2009”.

data retrieval such that the returned data is a collection of
circular regions defined by 1 degree radius from the eyes of
the tropical cyclones returned by the above query. The query
output list consists of 10 hurricanes/tropical cyclones between
2000 and 2009, and 175 QuikSCAT snapshots are retrieved.
A breakdown of the index search and retrieval computational
time for each output hurricane is shown in Figure 7. Since
the number of QuikSCAT snapshots is proportional to the
hurricane lifespan, the search and data retrieval time is pro-
portional to the hurricane lifetime. It takes slightly more than
30 minutes to complete this user data request that includes
(FTP) retrieving and uncompressing QuikSCAT data from the
PODACC data center.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we describe the data integration and the
system architecture of a moving objects database for ad-hoc
querying and retrieval of atmospheric events and their associ-
ated satellite measurements. Future work includes additional
functionalities for all system components and the continuation
of the development of the software library MOSL as well as
the design of the query language STQL. Further objectives are
the optimization of the storage and indexing for satellite data,
the exploration of additional scientific analysis operations, and
the implementation of functionalities to support spatial queries
based on both the satellite measurements and the hurricane
data.

VII. ACKNOWLEDGMENTS

This work was carried out at the University of Florida,
Gainesville, and at the University of Maryland, College Park.
It was funded by the National Aeronautics and Space Admin-
stration (NASA) Advanced Information Systems Technology
(AIST) Program under grant number AIST-08-0081.

REFERENCES

[1] T. Chen, A. Khan, M. Schneider, and G. Viswanathan, “iBLOB: Com-
plex Object Management in Databases through Intelligent Binary Large
Objects,” in 3rd Int. Conf. on Objects and Databases, 2010, pp. 85–99.

[2] M. Erwig, R. H. Güting, M. Schneider, and M. Vazirgiannis, “Spatio-
temporal Data Types: An Approach To Modeling and Querying Moving
Objects in Databases,” GeoInformatica, vol. 3, no. 3, pp. 269–296, 1999.

[3] M. Erwig and M. Schneider, “Spatio-temporal Predicates,” IEEE Trans.
on Knowledge and Data Engineering (TKDE), vol. 14, no. 4, pp. 881–
901, 2002.

[4] L. Forlizzi, R. Güting, E. Nardelli, and M. Schneider, “A Data Model
and Data Structures for Moving Objects Databases,” in ACM SIGMOD
Int. Conf. on Management of Data, 2000, pp. 319–330.

[5] R. Güting and M. Schneider, Moving Objects Databases. Morgan
Kaufmann Publishers, 2005.

[6] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. J. N. A. Lorentzos,
M. Schneider, and M. Vazirgiannis, “A Foundation for Representing and
Querying Moving Objects,” ACM Trans. on Database Systems (TODS),
vol. 25, no. 1, pp. 1–42, 2000.

[7] J. A. C. Lema, L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider,
“Algorithms for Moving Objects Databases,” Computer Journal, vol. 46,
no. 6, pp. 680–712, 2003.

[8] M. Schneider, S.-S. Ho, T. Chen, A. Khan, G. Viswanathan, W. Tang, and
W. T. Liu, “Moving Objects Database Technology for Ad-Hoc Querying
and Satellite Data Retrieval of Dynamic Atmospheric Events,” in Earth
Science Technology Forum, 2010.

[9] S.-S. Ho, W. Tang, W. T. Liu, and M. Schneider, “A Framework for Mov-
ing Sensor Data Query and Retrieval of Dynamic Atmospheric Events,”
in 22nd Int. Conf. on Scientific and Statistical Database Management
(SSDBM), ser. Lecture Notes in Computer Science, vol. 6187. Springer,
2010, pp. 96–113.

