Architecture of a Satellite-Based Sensor Network for Environmental Observation

Wei Ye, Fabio Silva, Annette DeSchon and Spundun Bhatt

Project funded by the Advanced Information Systems Technology (AIST) program

Sensor webs enable on demand, adaptive sensing across a wide range of spatial and temporal scales from both in-situ and space-based sensors

Broad vision: enable wide adoption of sensor web technology in scientific research

In-situ sensing networks are important components of large-scale sensor webs (focus of this paper)

Explore opportunities of combined in-situ sensing and space-based sensing (future direction)
Challenges in Building Sensor Nets for Science

- Rapidly deployable in remote locations by individual scientists
- Flexible to support different science applications
- Robust to harsh environments and potential failures
- Intuitive user interfaces and tools for scientists
Our Approaches

- Develop a turn-key system that addresses above challenges, called Sensor Processing and Acquisition Network (SPAN)
 - Emphasize on modular and extensible design

- How to address those challenges?
 - Remote locations: use satellite communication (or cellular)
 - Different science apps: develop a unified sensor integration framework
 - Robust operation: extensive system monitoring and failure recovery
 - User support: intuitive interfaces and tools to monitor and reconfigure the system
Outline

- Introduction
- System architecture
- Prototype implementation
- Lessons learned from initial deployment
- Conclusions
High-Level SPAN Architecture

SSG Front End (deployed in field)
- Data acquisition, meta-data tagging, reliable transmission, WAN access

SSG Back End (deployed in lab)
- Data storage, user interface

Internet

Satellite communication

Space-based sensors

In-situ sensor networks

 Scientist
Major Functions in SPAN

SPAN front end

SPAN back end
SPAN Front End (in the Field)

- **Sensor Management**
- Data Acquisition
- *Data and metadata management*
- Reliable data transmission
- **WAN access**
Unified Sensor Integration Framework

Framework for easy sensor integration

- Simple, low-level hardware to interface with various sensors
- Modularized and extensible driver library

![Diagram of sensor integration framework](attachment:image.png)
Sensor Driver Library

- **Streamlined sensor integration**
 - Mapping different sensors into system
 - Support analog, digital, serial, networked sensors

- **Software abstraction to easily control sensors**
 - Unified API to control different sensors
 - Enable or disable channels, set sampling rate, raw data or average
 - Obtain metadata for each channel
 - Sensor make, model, serial number, measurement type and unit, etc.
 - Sensor calibration

- **Modular and reusable software components**
Protocols for Data and System Management

- Designed protocols for managing data, control and status information
- Implemented protocols on CompactRIO
SPAN Back End (in the Lab)

- **Data storage**
 - Support both databases for individual scientists or shared by community

- **Provide three types of user interfaces**
 - **Command interface:** control and reconfigure system remotely
 - Start or stop a sensor, or change sampling rates
 - **Data interface:** easily access sensor data and metadata
 - **Status interface:** monitoring status of entire system
 - Component failure, availability of satellite link
Provide Different Methods to Access Sensor Data

Different access methods meet different needs

- **Live data feed**
 - real-time, no reliability guarantee

- **Database storage**
 - reliability guarantee even when components fail

- **SPAN system**

- **Private use**
 - MySQL database

- **Publish and sharing**
 - SensorBase
Outline

- Introduction
- System architecture
- Prototype implementation
- Lessons learned from initial deployment
- Conclusions
Platform Consideration

- **Data acquisition system: CompactRIO**
 - Rugged platform, rich sensor interfaces, LabView programming

- **Communication technologies**
 - WAN: WildBlue satellite-based Internet service
 - Local wireless: mote-based wireless sensor network

- **Embedded PC: Stargate**
 - Drives satellite modem and provides access control

- **Database: MySQL database**
 - Robust open-source database on Linux

- **Network monitoring tools: Nagios**
 - Nice graphical interface
System Integration

Hobo data logger
Mote
Sensors

To satellite
CompactRIO
Sensors
Stargate
Back End

Front End
Major system components

- **CompacRIO**: connects to wired environmental sensors
- **Stargate (Linux PC)**: provides access control and connects to wireless sensors
- **Data grabber**: reliable data retrieval from front end and injection into database
- **SensorBase**: Database for scientists
- **Nagios**: system monitoring
Outline

- Introduction
- System architecture
- Prototype implementation
- Lessons learned from initial deployment
- Conclusions
Ecological research

- Investigate the influence of southern California drought conditions on different species of plants
- Use constant-heating sap flow sensors to monitor the flow of water through the xylem of replicated stems of plants
- Scientist: Prof. Phil Rundel at UCLA
Deployment at Stunt Ranch

- **Complete front-end system**
 - CompactRIO
 - Stargate
 - Environmental sensors
 - Solar radiation (PAR)
 - Precipitation
 - Wind speed
 - Temperature
 - Humidity

- **WildBlue satellite comm**
- **Sap flow sensors on selected plants**
- Provided sensor data to scientists
- System operates reliably during first three months
 - No system crash
 - No data loss
 - Discovered and fixed a few bugs for second round of deployment

Correlated sensor data from precipitation, relative humidity and solar radiation
Real-time data access in SensorBase

- Provide real-time to scientists with database access
- Can be shared among different scientists

Easy access with web interface

Cleanly organized sensor data
Other Lessons Learned

- **Even the site has line power, cannot assume it is reliable**
 - We saw several instances that the power was cut due to unknown reasons
 - Needs backup battery to report emergency events

- **Protect the equipment from honeybees (and other insects)**
 - We found a honeybee hive with hundreds of bees inside our equipment box after a few months of deployment
 - Needs better sealing
Sensor webs can be a powerful technology for environmental and ecological research

- Combine in-situ and space-based sensor systems
- Dynamic reconfiguration

Our current focus is developing robust and easy-to-use in-situ sensor networks

The architecture of our system has been validated with our first prototype deployment for ecological research
Future Directions

- **Standard-based data management**
 - Had good discussion with Mike Botts on SensorML at Sensor Web PI meeting

- **Automated and distributed system reconfiguration**
 - Fast response to triggering events

- **Explore systems and applications that combine in-situ sensing with space-based remote sensing**
 - We are interested to find collaborators
Thank you! Questions?

- Project is funded by NASA ESTO’s AI ST program as “Satellite Sensornet Gateway (SSG)"
 - website: http://ssg.isi.edu