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Abstract 
Abstract-Current techniques for cyclone detection 
and tracking employ NCEP (National Centers for 
Environmental Prediction) models from in-situ 
measurements. This solution does not provide global 
coverage, unlike remote satellite observations. 
However it is impractical to use a single Earth 
orbiting satellite to detect and track events such as 
cyclones in a continuous manner due to limited spatial 
and temporal coverage. One solution to alleviate such 
persistent problems is to utilize heterogeneous sensor 
data from multiple orbiting satellites. However, this 
solution requires overcoming other new challenges 
such as varying spatial and temporal resolution 
between satellite sensor data, the need to establish 
correspondence between features from different 
satellite sensors, and the lack of definitive indicators 
for cyclone events in some sensor data.  
 
In this NASA Applied Information Systems Research 
(AISR) funded project, we describe an automated 
cyclone discovery and tracking approach using 
heterogeneous near real-time sensor data from 
multiple satellites. This approach addresses the unique 
challenges associated with mining, data discovery and 
processing from heterogeneous satellite data streams. 
We consider two remote sensor measurements in our 
current implementation, namely: the QuikSCAT wind 
satellite data, and the merged precipitation data using 
TRMM and other satellites. More satellites will be 
incorporated in the near future and our solution is 
sufficiently powerful that it generalizes to multiple 
sensor measurement modalities. Our approach 
consists of three main components: (i) feature 
extraction from each sensor measurement, (ii) an 
ensemble classifier for cyclone discovery, and (iii) 
knowledge sharing between the different remote 
sensor measurements based on a linear Kalman filter 
for predictive cyclone tracking. Experimental results 
on historical hurricane datasets demonstrate the 

superior performance of our automated approach 
compared to previous work. Results of our cyclone 
detection and tracking technology using our 
knowledge sharing approach is discussed and is 
compared with the list of cyclones reported by the 
National Hurricane Center for a specific year. The 
performance quality of our automated cyclone 
detection solution is found to closely match the 
manually created database of cyclones from the 
National Hurricane Center in our initial analysis.  

 
1. Introduction 
 
Tropical and extra-tropical cyclones are important 
components of the Earth climate system that exhibit 
variability at different temporal and spatial scales. 
Cyclone landfall causes great devastation, incurs fatality, 
and affects people’s livelihood. To identify and track 
tropical weather system, the Tropical Prediction 
Center/National Hurricane Center (TPC/NHC) uses 
conventional surface and upper-air observations and 
reconnaissance aircraft reports [1], and these are 
concentrated in the North American coasts and in 
Japan/Europe to some degree. Coverage on a global basis, 
especially in under-developed and developing nations 
such as large portions of Asia, Africa is limited or lacking 
which results in disastrous consequences in many of these 
regions. In recent years, some studies have used satellite 
images that are manually retrieved and analyzed to 
improve the accuracy of cyclone tracking; this procedure 
is currently slow, tedious, involves coverage of only local 
regions in North America, and requires close analysis by 
teams of experts. 
 
 In this paper, we describe a novel automated global 
cyclone discovery and tracking approach on a truly global 
basis using near real-time (NRT) (and historical) sensor 
data from multiple satellites. Our current implementation 
employs two types of satellite sensor measurements, 
namely: the QuikSCAT wind satellite data, and the 
merged precipitation data using TRMM and other 



satellites. We address the challenges of mining 
heterogeneous data from multiple orbiting satellites at 
different spatial and temporal resolutions (see Figure 1). 
In particular, knowledge sharing between the 
heterogeneous sensor measurements addresses the 
problem where some sensor measurements lack definitive 
indicator for cyclone events, and the spatial and temporal 
resolutions differ for different sensor. For instance, one 
cannot confidently identify cyclone based on TRMM 
precipitation data alone even though it has a finer 
temporal resolution than QuikSCAT. Through our 
knowledge sharing methodology, QuikSCAT wind data 
provides information to the TRMM precipitation data 
about the likely cyclone location so that the TRMM 
detector can focus its search on some local region and 
reduces false alarm for cyclone detection on TRMM data 
measurements (see Figure 2). 
 

 
Figure 1. Data availability timeline from TRMM 
(3B42 data), QuikSCAT (L2B data) and Aqua 
(MODIS) on 18 Aug 2007 for Hurricane Dean 
 
Peta-bytes of Earth science remote sensor measurements 
acquired by the NASA satellites are publicly available for 
analysis and knowledge discovery. These data consist of 
both archived historical (science products) unlabeled data 
and near real-time (NRT) data streams, much of which is 
also not analyzed. There are a number of challenges 
pertaining to mining data from orbiting satellites.  For 
example, each orbiting satellite (such as QuikSCAT, 
AVHRR, MODIS) typically cannot monitor a region 
continuously and the measurements are instantaneous. 
While these challenges cannot be completely overcome, 
one can minimize their effects by using data from 
multiple satellites. However, different satellites provide 
different measurements. Moreover, different satellite 
sensors acquire measurements at different spatial and 
temporal resolutions. These problems make mining 
heterogeneous data from multiple orbiting satellites 
extremely challenging, and remains as of now primarily 
an unsolved problem.   

 
Figure 2.  Utilizing the QuikSCAT and the TRMM 
satellites for cyclone tracking via knowledge sharing 
 

Besides the challenges posed by mining heterogeneous 
remote satellite data, in general there are challenges 
related specifically to the problem of detection and 
tracking of cyclones. First, cyclone events are dynamic in 
nature i.e., they evolve rapidly in shape and size over 
time. Second, there is a lack of annotated negative (non-
cyclone) examples by experts; this makes training of 
classifiers for cyclone detection a difficult one. Third, a 
single satellite sensor may miss a cyclone event due to a 
pre-defined orbiting trajectory. Our approach addresses 
and provides an effective solution to each of these 
challenges and we demonstrate its effectiveness on some 
recent hurricane events.  
 
The paper is organized as follows. Section 2 provides a 
brief review on previous work on cyclone detection and 
tracking. Section 3 describes the data used in our 
implementation for cyclone discovery and tracking. In 
Section 4, we described our approach for cyclone 
discovery using an ensemble classifier and knowledge 
sharing between QuikSCAT and TRMM data for cyclone 
tracking. In Section 5, extensive experimental results to 
validate our proposed approach using historical tropical 
cyclone occurrences are presented. 
 
2. Previous Work 
No solution currently exists that uses heterogeneous 
sensor measurements to automatically detect and track 
cyclones. In a few partially successful studies, visible and 
infrared images from geo-stationary satellites are 
analyzed manually, together with other data sources, 
using the Dvorak technique [2] to classify the tropical 
cyclone development stage. Different intensity and track 
forecast models are computed based on the identified 
hurricane location and related information. The models 
are analyzed manually to eliminate the unlikely 



predictions. Automated tropical cyclone forecasting 
system provides an organized framework for forecaster to 
access information such as cyclone data and numerical 
weather prediction (NWP) model data has been 
developed [3, 4]. Forecasters, however, have to make 
their own conclusions based on the available information. 
These work focus on detecting and tracking hurricanes 
that are likely to landfall only in North America, and they 
involve human interference and decisions. 
 
Prior techniques proposed for automated storm or cyclone 
identification and tracking use aerial reconnaissance 
aircraft data and local radar data that have limited 
coverage and do not measure parameters on a global 
scale. An improved algorithm for the Weather 
Surveillance Radar, 1988, Doppler (WSR-88D) has been 
proposed for storm identification and tracking [5]. 
Sinclair [6] noted the importance of good features for 
cyclone identification and proposed a variant of the 
vorticity feature. Lee and Liu [7] proposed an automated 
approach for the Dvorak technique using an elastic graph 
dynamic link model based on elastic contour matching. 
Lakshmanan et al. [8] proposed a hierarchical K-means 
clustering method to identify storms and their motions at 
different scales. These approaches are concerned with 
storm or cyclone tracking which require manually 
locating the initial cyclone tracks and tedious data 
retrieval.  
 
There are existing and developing web-based information 
systems which systematically archive satellite 
measurements for hurricanes1 or (more generally) tropical 
cyclones23 for scientific purposes. However, these 
information systems are based on track information from 
TPC/NHC. Two products of JAXA (Japan Aerospace 
Exploration Agency) related to our research are the 
“AMSR-E Typhoon Real-Time Monitoring” for the 
Western Pacific region and a global real-time monitor 
using the TRMM satellite4. Again, these products involve 
human detection and tracking. One interesting 
development in event monitoring is the Autonomous 
Science-craft Experiment (ASE) which automatically 
prioritizes and schedules observations on regions of 
interest [9]. Currently, this technology is used for NRT 

                                                 
1http://disc.sci.gsfc.nasa.gov/hurricane/HurricaneArchiveGaller

y.html (only North America hurricanes) 
2 http://tropicalcyclone.jpl.nasa.gov/hurricane/main.jsp 
3 http://sharaku.eorc.jaxa.jp/TYP_DB/index_e.shtml  
4 http://www.eorc.jaxa.jp/TRMM/NRTtyphoon/index_j.htm 

(Japanese Only) 

monitoring of events such as volcano activities5 and 
floods6.  
3. Data Description 
In this section, we describe the two types of remote 
sensing data used in our cyclone discovery and tracking 
implementation: QuikSCAT wind data from a polar 
orbiting satellite (Section 3.1), and the merged high 
quality/infrared (HQ/IR) precipitation data from the 
TRMM orbiting satellite and other Geostationary 
Operational Environmental Satellites (GOES) (Section 
3.2).  
 
3.1. QuikSCAT Wind Data 
The QuikSCAT (Quick Scatterometer) mission provides 
important high quality ocean wind data set. QuikSCAT is 
a polar orbiting satellite with 1800 km wide measurement 
swath on the Earth surface. Generally, this results in twice 
per day coverage over a given geographic region. The 
specialized microwave radar (SeaWinds instruments) on 
the QuikSCAT satellite measures wind speed and 
direction under all weather and cloud conditions over 
Earth oceans. Near real-time wind data is available to 
weather forecasting agencies from NOAA within three 
hours of observation. The ocean wind vectors in the 
measurement swaths have a spatial resolution of 12.5 and 
25 km. The ocean wind data is used for global weather 
forecasting and modeling. It is also used to understand 
environmental phenomena such as El-Niňo, tropical 
cyclones, and the effects of winds on ocean biology. 
 
The SeaWinds Processing and Analysis Center (SeaPAC) 
at JPL is responsible for the reception of the telemetry 
data from the satellite, raw data processing and analyzing. 
The processed data is then delivered to the Physical 
Oceanography Distributed Active Archive Center7 
(PO.DAAC) for public distribution. More information 
about QuikSCAT science data product is found in [10]. 
 
Recent research showed that QuikSCAT data is useful for 
early identification of tropical depression [11] and early 
detection of tropical cyclones [1, 12]. Moreover, 
QuikSCAT data has been used in the three-dimensional 
variational data assimilation technique for better cyclone 
track and intensity forecasting [13]. Our recent work [14] 
showed the feasibility of using QuikSCAT wind 
measurements for automated cyclone identification.  
 
3.2. Precipitation Data from TRMM satellite 

                                                 
5 http://modis.higp.hawaii.edu/  
6 http://www.dartmouth.edu/~floods/index.html  
7 http://podaac.jpl.nasa.gov/ 



The Tropical Rainfall Measurement Mission (TRMM) is 
a joint mission between NASA and the Japan Aerospace 
Exploration Agency (JAXA) designed to monitor and 
study tropical rainfall8. The TRMM satellite carries five 
remote sensing instruments onboard, namely: 
Precipitation Radar (PR), TRMM Microwave Imager 
(TMI), Visible Infrared Scanner (VIRS), Clouds and 
Earth Radiant Energy Sensor (CERES), and Lightning 
Imaging Sensor (LIS).  
 
TRMM satellite orbits between 35 degrees north and 35 
degrees south of the equator. It takes measurements 
between 50 degrees north and 50 degrees south of the 
equator. The real-time processing and post-processing of 
the TRMM science data is performed by the TRMM 
Science Data and Information System (TSDIS). All 
TRMM products are archived and distributed to the 
public by the Goddard Distributed Active Archive Center 
(GES DISC DAAC)9. 
 
The (Level) 3B42 TRMM data product used in this paper 
is produced using the combined instrument rain 
calibration algorithm using an optimal combination of 
(Level) 2B-31 data (vertical hydrometeor profiles using 
PR radar and TMI data), (Level) 2A-12 data (vertical 
hydrometeor profiles at each pixel from TMI data), SSMI 
(Special Sensor Microwave/Imager10), AMSR (Advanced 
Microwave Scanning Radiometer on board the Advanced 
Earth Observing Satellite-II (ADEOS-II) 11) and AMSU 
(Advanced Microwave Sounding Unit on NOAA 
geostationary satellites) precipitation estimates, to adjust 
IR estimates from geostationary IR observations. Near-
global estimates are made by calibrating the IR brightness 
temperatures to the precipitation estimates. The 3B-42 
data quantifies rainfall for 0.25°×0.25° degree grid boxes 
every 3 hours and the precipitation measurements range 
from 0.0 to 100mm/hr. 
 

4. Heterogeneous remote satellite-based 
detection and tracking approach 
In Section 4.1, we describe the QuikSCAT features used 
in our ensemble approach for cyclone detection described 
in Section 4.2. Our cyclone tracking solution based on 
knowledge sharing between heterogeneous TRMM and 
QuikSCAT data is described in Section 4.3. 
 

                                                 
8 http://trmm.gsfc.nasa.gov/ 
9 http://disc.sci.gsfc.nasa.gov/ 
10 http://www.ncdc.noaa.gov/oa/satellite/ssmi/ssmiproducts.html 
11 http://sharaku.eorc.jaxa.jp/AMSR/index_e.htm 

4.1. QuikSCAT Feature Selection  
In our automated cyclone identification and tracking 
approach, features which characterize and identify a 
cyclone are selected and extracted from the QuikSCAT 
satellite data. We utilize the QuikSCAT Level 2B data 
which consists of ocean wind vector information 
organized by full orbital revolution of the satellite as it is 
very similar to the NRT wind data. One satellite full polar 
orbiting revolution takes about 101 minutes. The Level 
2B data are grouped by rows of wind vector cells (WVC) 
which are squares of dimension 25 km or 12.5 km. A 
complete coverage of the earth circumference requires 
1624 WVC rows at 25 km spatial resolution, and 3248 
rows at 12.5 km spatial resolution. The 1800 km swath 
width amounts to 72 25 km WVCs or 144 12.5 km 
WVCs. Occasionally, the measurements lie outside the 
swath. Hence, the Level 2B data contains 76 WVCs at 25 
km spatial resolution and 152 WVCs at 12.5 km spatial 
resolution to accommodate such instances. 
 
There are 25 fields in the data structure for the Level 2B 
data. We are, however, only interested in the latitude, 
longitude, and the most likely wind speed and direction 
for the WVCs. The fields that are of interest to us are 
summarized in the Table 1. 
 
After the Level 2B data is received, it needs to be 
interpolated on a uniformly gridded surface. This is due 
to the non-uniformity in the measurements taken by the 
QuikSCAT satellite on a spherical surface. The nearest 
neighbor rule is used for this pre-processing procedure for 
both wind speed and direction. 

Table 1 

Field Unit Minimu
m  

Maximu
m 

WVC latitude Deg -90.00 90.00 

WVC longitude Deg E 0.00 359.99 

Selected speed m/s 0.00 50.00 
Selected 
direction 

Deg from 
North 0.00 359.99 

 
Histograms are constructed to estimate the underlying 
probability density of the wind speed (WS) and wind 
direction (WD) within a predefined bounding box 
extracted from a QuikSCAT image. Let  and 

 be the wind speed and wind direction at 
location . One defines the direction to speed ratio 
(DSR) at  as 

 
When there is a strong wind with wind circulation, the 
DSR at a wind vector cell (WVC) will be small. In 
particular, a histogram constructed to estimate the 



underlying probability density of DSR in a region will 
have a skewed distribution towards the smaller value. 
When there is weak (or no) wind with no circulation, 
DSR histogram does not have the skewed characteristics. 
We use a bin size of 4, 30, and 5 for WS, WD, and DSR, 
respectively according to [14]. One notes that there is a 
marked difference between a cyclone event and a non-
cyclone event in their WS, WD and DSR estimated 
probability density using histogram. These histogram 
features are helpful in discriminating between the two 
events. When a region contains a cyclone, the WS 
histogram shows a density estimate that skewed towards 
the larger values. Furthermore, WD histogram shows a 
“near uniform” distribution. 
 
According to the National Oceanic and Atmospheric 
Administration (NOAA), a cyclone is defined to be a 
“warm-core non-frontal synoptic-scale” system, with 
“organized deep convection and a closed surface wind 
circulation about a well-defined center”. To discriminate 
between cyclone and non-cyclone events based on this 
circulation property, we use two additional features: (i) a 
measure of relative strength of the dominant wind 
direction (DOWD) [14], and (ii) the relative wind 
vorticity (RWV). 
 
Let  and  be the u-v components of the wind 
direction  at location  with 1≤i≤ m and 1≤j≤n. 
One constructs a (m× n)-by-2 matrices M of the form 

 
Let  and  be the eigenvalues of matrix M such that  
< . The eigenvalue ratio of a bounding box B of 
dimension m by n is 

 
 is used to quantify the relative strength of the 

dominant wind direction (DOWD) [14] within the region 
of interest (box) B. If there is circulation (i.e. in regions 
with a cyclone),  will be near to 1. If the wind is 
unidirectional (regions that do not have a storm or a 
cyclone), will be much greater than . As a result,  
is much larger. 
 
The relative wind vorticity (RWV) [15] at location  is 

 
where u and v are the two wind vector components in the 
west-east and south-north directions, and d is the spatial 

distance between two adjacent QuikSCAT measurements 
in a uniformly gridded data. One notes that wind vorticity 
has been used for cyclones analysis [6, 12]. 
 
4.2. Ensemble Classifier for Cyclone Detection  
Ensemble methods are learning algorithms that make 
predictions on new observations based on a majority vote 
from a set of classifiers or predictors. We build an 
ensemble classifier to identify cyclones in QuikSCAT 
images. First, regions likely to contain a cyclone are 
localized based on wind speed. Then, regions that have an 
area below a threshold are removed. Five classifiers based 
on features extracted from the QuikSCAT training data 
are constructed to identify the cyclones. Two classifiers 
are simple thresholding classifier based on the DOWD 
and the RWV features. The other three classifiers are 
support vector machine (SVM) [18] using histogram 
features for WS and WD, and DSR similar to [14]. The 
classification decision is based on a majority vote among 
the five classifiers. Figure 3 shows the ensemble classifier 
design. 

 
Figure 3. Ensemble Classifier (Cyclone Discovery 
Module) 
 
4.3. Knowledge Sharing between TRMM and 
QuikSCAT data for Cyclone Tracking 
Our multi-sensor knowledge-sharing solution leverages 
the strength of each remote sensor type. QuikSCAT has 
excellent information for accurate cyclone detection but 
lacks sufficient temporal resolution (each pass-through is 
repeated every 12 hours). TRMM on the other hand has 
excellent temporal resolution of 3 hours, but lacks good 
discriminative ability for accurate cyclone detection. 



Therefore, we employ QuikSCAT for cyclone detection 
(every 12 hours), and TRMM data for tracking (every 3 
hours) based on knowledge passed through by the 
cyclone detector classifier from QuikSCAT. This solution 
therefore ensures a high detection rate for cyclones while 
maintaining a fine temporal resolution during cyclone 
tracking. Our automated cyclone tracking using 
knowledge sharing is shown in Figure 4. Initially, 
QuikSCAT data is retrieved from the database or from 
real-time streaming information, and is input into the 
cyclone discovery module (Figure 3) to locate/identify 
possible cyclones. The cyclone location is then used to 
predict the regions that are likely to contain a cyclone at 
the next incoming data stream retrieved using a linear 
Kalman filter predictor. If the next data stream is the 
3B42 TRMM data, a constrained search is carried out 
around the region most likely to contain the cyclone as 
identified by the Kalman Filter predictor. This 
constrained tracking via the Kalman Filter predictor is 
especially important for the 3B42 TRMM precipitation 
data as it is not a definitive indicator of cyclones and is 
susceptible to high false alarms. The estimated search 
region localizes the region that is most likely to contain 
cyclone based on past cyclone tracks and hence the 
incidence of false alarms is minimized by a large margin. 
A cyclone is localized by applying a threshold to the 
TRMM precipitation rate measurement (T6 = 0). After a 
cyclone is located in the TRMM data, the Kalman filter 
measurement update (“correction”) is applied to obtain an 
estimate of the new state vector or the predicted location 
of the cyclone in the next TRMM (or QuikSCAT) 
observation cycle after 3 hours. 

 
Figure 4. Knowledge sharing between TRMM and 
QuikSCAT data for Cyclone Tracking 
The system equations used in the Kalman filter are  

 
 

where  is the state vector at time instance k+1,  is 
the observation vector at time instance k,  is the state 
transition matrix,  is the observation matrix,  and  

are Gaussian noise at time instance k. The matrix form of 
the above system equations are as follows. 

 

 
where   is the time difference between the next 
satellite image and the current satellite image. This is a 
known parameter between two consecutive TRMM 
satellite images (3 hours), and between a current 
QuikSCAT image and the next TRMM satellite image. As 
mentioned earlier, since the spatial resolution varies for 
different satellite data, we use the longitude and latitude 
coordinates as the fixed x-y reference frame for the 
tracking computation. 
 
An important novel contribution of our solution for 
knowledge sharing via prediction is the modeling of the 
cyclone predictor and tracker that takes into account the 
widely varying spatial characteristics of cyclones. 
 
Cyclones are dynamic events and their size evolves 
rapidly over time. Typical tracking and prediction 
techniques use the center of an object as the single point 
to track and predict over time. This model works well for 
rigid objects that do not change shape with time. 
However, modeling and predicting the evolution of a 
cyclone in space over time using only the cyclone center 
will be grossly inadequate since cyclones often increase 
in size as they evolve from a depression to a storm to a 
hurricane, and then decrease rapidly in size after hitting 
landfall. We therefore model the cyclone as a four-
dimensional state vector that is described by the 
maximum and minimum latitude/longitude of the 
bounding box spanned by the cyclone.. Our hypothesis is 
that the bounding box that is described by the (x,y) spatial 
span of the cyclone evolves linearly in space over time. 
We expand (or contract) the estimated bounding box 
based on the estimated Kalman error covariance to define 
a search region for the cyclone in the TRMM image. This 
modeling approach significantly improves the quality of 
knowledge sharing between heterogeneous satellites as 
compared to using a predictor/tracker using only the 
center coordinates of the cyclone. 
 
5. Experimental Results 
In Section 5.1, experimental results on classification for 
both preprocessed cyclone/non-cyclone images to 
Cyclone Discovery Module (CDM).  In Section 5.2, the 
experimental results show that the CDM is robust and 
works on QuikSCAT swath satellite data. In Section 5.3, 
the feasibility of the knowledge sharing between two 



different satellite data for cyclone tracking is 
demonstrated.     
 
5.1. Identification of Preprocessed Cyclone 
Images from North Atlantic and Gulf Region in 
2003  
Our training data consists of 191 QuikSCAT images of 
tropical cyclones (i.e. tropical depression, tropical storms, 
and hurricanes) occurring in the North Atlantic Ocean in 
2003. We also randomly collected 1833 unlabeled 
examples from four days in 2003 when no tropical 
cyclone occurred. These examples, labeled as negative 
examples, are included into the training set. Our testing 
set consists of 84 cyclone events in the North Atlantic 
Ocean in 2006 and 1822 non-cyclone events, collected 
from four days in the same year when there was no 
tropical cyclone.  
 
Table 2 shows the performance for the various 
classification systems on the testing examples. The 
DOWD classifier [14], RWV classifier, and the Cyclone 
Discovery Module (CDM) are compared to the cyclone 
identification system (CIS) and the SVM ensemble 
proposed in [14].  The SVM ensemble uses identical 
parameters to the SVM classifiers in the CDM. The CIS 
parameters are found in [14]. The DOWD and RWV 
classifiers use the thresholds we determined earlier. The 
parameters for CDM are set as follows: T1=12m/s, 
T2=400 pixels, T3=1.510, T4=1.958, and T5 = 2.  
 
From Table 2, one sees that CDS is a significant 
improvement from the CIS [14]. Moreover, RWV 
classifier by itself is also a powerful classifier with both a 
high true positive rate (TPR) and a extremely favorable 
true negative rate (TNR) compared to the other 
classifiers. However, one notes that for RWV classifier to 
achieve the TPR of CDS (by lowering the threshold 
value), its TNR becomes less than 0.7.   
 
Table 2. Comparison of various classifier on the testing data 
(TPR: True Positive Rate; TNR: True Negative Rate; FPR: 

False Positive Rate; FNR: False Negative Rate) 

 Cyclone 
Discovery 

Module 
(CDM) 

SVM 
Ensemble 

[14] 

RWV   DOWD 
[14] 

CIS 
[14] 

TPR  0.9167 
(77) 

0.8810 
(74) 

0.8690 
(73) 

0.8452  
(71) 

0.7262 
(61) 

TNR 0.7607 
(1386) 

0.7261 
(1323) 

0.8562 
(1560) 

0.4232 
(771) 

0.5521 
(1006) 

FPR  0.2393 
(436) 

0.2739 
(499) 

0.1438 
(262) 

0.5768 
(1051) 

0.4479 
(818) 

FNR 0.0833 
(7) 

0.1190 
(10) 

0.1310 
(11) 

0.1548 
 (13) 

0.2738 
(23) 

 

5.2. Identification and Tracking of Tropical 
Cyclones occurring in North Atlantic and Gulf 
Region in 2005 
2141 QuikSCAT L2B swaths between latitude 5N and 
60N, and between longitude 0W and 100W (North 
Atlantic Ocean) in 2005 are collected to test our proposed 
Cyclone Discovery Module (CDM).  We also collected 
the best-track data from the National Hurricane Center 
(NHC) to validate our experiment results. 
 
The overall result is as follows. 
1. All 26 tropical cyclones reported by NHC are 

detected. 
2. 1 post-season NHC identified subtropical storm is 

detected. 
3. 2 out of 3 tropical depressions (that did not 

developed further) reported by NHC are detected. 
 

We note that  
1. CDM picked up earlier signs of Hurricane Maria 3 

days before NHC. 
2. CDM picked up earlier signs of Hurricane Vince, 

when it is an extra-tropical storm, 3 days before NHC 
[Atlantic Tropical Weather Outlooks (NOAA) did 
not discuss the non-tropical precursor disturbance to 
Vince until it had begun to acquire subtropical 
characteristics] (see Figure 5).  Hurricane Vince is 
the first known tropical cyclone to reach the Iberian 
Peninsula according to NHC. 

3. One earlier weather system that may be related to 
Tropical Storm Lee which deserves further 
investigation. 

 
Figure 5. CDM detects Hurricane Vince when it is still 
an extra-tropical storm. 
 
 
 
5.3. Tracking 2007 Hurricane Gonu in the Indian 
Ocean using QuikSCAT and TRMM data via 
knowledge sharing 



Figure 6 demonstrates the feasibility of tracking 
methodology using both Level 2B QuikSCAT data and 
3B42 TRMM data for Hurricane Gonu (reaching 
Category 5 wind speed level) in the North Indian Ocean 
in 2007 for two days. It is the strongest tropical cyclone 
since record keeping begun in 1945 for the North Indian 
Ocean and the Arabian Sea. Hurricane Gonu is an 
interesting weather event as tropical cyclones developed 
in the Arabian Sea very rarely exceed the tropical storm 
intensity, i.e. becoming a hurricane.  

 

 
Figure 6. Two days tracking of Hurricane Gonu in 
2007 using the QuikSCAT and the TRMM data. A red 
box bounds the predicted cyclone. The region 
bounded by a black box is a region correctly identified 
as a non-cyclone region. 
   
6. Conclusion 
Autonomous knowledge discovery from massive 
heterogeneous satellite data is extremely desirable for 
advance scientific understanding of the global climate, 
environmental science, space science, and Earth science. 
Yet, conventional methods cannot handle such massive 
unlabeled high-dimensional heterogeneous data. These 
data remain largely unexplored and under-utilized due to 
the lack of human resources to manually analyze such 
data using science experts, inadequate data mining 
techniques to process these data. Our solution provides a 
novel, first-of-a-kind solution to heterogeneous satellite 
data mining and knowledge sharing for event detection 
and tracking from near-real-time data streams and from 
massive historical science data sets.  
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