
Abstract. Progress toward the construction of a 
"sensor web simulator" (SWS)  as applied to a 
future wind lidar mission is discussed along with 
preliminary results. The motivation for the 
simulator is to provide the community a tool that 
would quantify the scientific return of a 
meteorological application in which a numerical 
forecast model intelligently drives data 
c o l l e c t i o n . B e c a u s e t h e d e s i g n a n d 
implementation of such a complex observing 
system would be costly and would involve 
significant risk, end-to-end simulation is 
essential. We expect the SWS  to provide 
information systems engineers and Earth 
scientists with the ability to define and model 
candidate designs and to quantitatively measure 
predictive forecast skill  improvements. The SWS 
will serve as a necessary trade studies tool to: 
evaluate the impact of selecting different types 
and quantities of remote sensing and in situ 
sensors; characterize alternative platform 
vantage points and measurement modes; and to 
explore rules of interaction between sensors and 
with weather forecast/data assimilation 
components to reduce model error growth and 
forecast uncertainty. We will  show results 
depicting forecast skill impact from an end-to-
end simulation performed "by hand" in which  

key elements of the simulator were present, and 
make note of progress toward the construction of 
the simulator that will culminate in a live 
demonstration in late 2009.

The development of atmospheric numerical models 
over the past four decades has helped to improve 
weather prediction by linking together the many 
atmospheric and oceanic observations through data 
assimilation and to apply appropriate constraints 
based upon the governing equations. Predictive skill 
of the state-of-the-art atmospheric models have 
slowly improved over this time. In the mid 1970’s 
the operational models used by the European Centre 
for Medium Range Weather Forecasts (ECMWF), 
considered to be the world’s best, had roughly 3-4 
day skill of forecasting large-scale atmospheric 
features, while today the skill is approaching 9 days 
(statistics for US models are shown in Figure 1). 
Over this thirty year period there have been a 
number of evolutionary developments that have 
contributed to the observed improvement in skill: 
more numerous and better quality observations 
from satellites, improvements in the numerical 
techniques employed by the numerical models and 
the data analysis schemes, and improvements in the 
computational infrastructure (i.e., high performance 
computing, networking, and large-scale data stores). 
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Meanwhile, the development of complete Earth 
System models (i.e., atmosphere + ocean + 
chemistry + ...) has proceeded more slowly, with the 
individual components developed in essentially a 
stovepipe fashion by various research institutions. 
The recent emergence of the Earth System 
Modeling Framework (ESMF), a software 
infrastructure that provides common data structures, 
interfaces, and methods for the modeling 
community, has provided the first capability to 
easily couple major Earth System model 
components. Bringing the full suite of observations 
to bear on the numerical models remains elusive 
and is an area that must be addressed in order to 
make progress toward the stated strategic goals.

Operational use of so-called “targeted observations” 
could facilitate the evolution of predictive skill. 
Studies at NASA and NOAA have investigated 
techniques to identify critical regions of the 
atmosphere that are highly sensitive to analysis 
errors. Increased data sampling in these regions has, 
in some instances, resulted in better predictive skill 
(Toth, et. al, 2001). The ability to extrapolate this 
capability to a global scale and interact with the full 
suite of observational assets will ultimately 
determine the full potential of the technique.

Approach

Implementation of an operational national 
forecasting system that includes autonomous 
targeted observations would be costly  and would 
involve risk. New technologies would need to be 
developed for integrating disparate hardware and 
software components that would col lect 
observations, perform quality control, analyze data, 
perform numerical forecasts, identify where new 
observations are required, initiate planning and 
scheduling, and perform command and control for 
the end-to-end observing system. Aside from the 
engineering challenges, the mathematical 
complexities of data assimilation and the chaotic 
nature of the atmosphere ensure there are no 
guarantees that the suggested sensor web would be 
a panacea for improving predictive skill of weather 
forecasts. 

The simulator is a critical first step in the 
development path of using intelligent targeting  for 
operational data assimilation and forecasting. Many 
parameters will control the behavior of the 
simulated observing system (e.g., sensor 
measurement and instrument targeting parameters; 
attributes of the forward and return link 
communications architecture, etc.). Of particular 
significance, the simulator will permit the user to 
modify  the values of these parameters thus enabling 
trades analyses to be performed. By  creating and 
then exploring “What-if?” operations concepts and 
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Figure 1. Anomaly correlation representing growth of predictive skill (in days, X axis) for 1989 
(blue), 2005 (green), and the goal for 2025 (gold) for US operational models. When the 

correlation falls below 0.6 the forecast is deemed to have no skill.
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scenarios, the SWS will become a valuable decision 
support tool that can be used to quantitatively assess 
the value of alternative intelligent targeting schemes 
toward predictive skill improvement, and permit the 
user to weigh any science benefits against the 
concomitant observing system’s overall complexity 
and cost. Our approach to an operational model-
driven sensor web is depicted in Figure 2, and is 
based upon Steiner, et. al (2002). Major 
functionality of the simulator is captured in its key 
components:

1. Observing System: provides data to the 
simulation environment, either through the use 
of historical case studies or, in the case of a 
simulation of a future instrument, Observing 

System Simulation Experiments (OSSEs) are 
performed by this component to generate 
realistic, synthetic measurement data. 

2. Data Processing: performs data selection and 
quality control.

3. Prediction System: performs the major roles of 
data assimilation and numerical prediction.

4. Targeted Observing: provides the specific 
requests for observations to be made over a 
specific location and time. Requests can be 
made directly from the observing system (in the 
case of a feature of interest being observed), 
from the assimilation system (in the case of 
identification of a set of observations 
specifically to reduce model error), or from 
human intervention (in the case of a scientist 
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Figure 2.  “Science layer” - main architecture for the sensor web simulator.
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performing a field experiment and needing 
some control over the assets).

5. External Control System: matches the 
capabilities of the assets with targeting requests 
and produces an optimized targeting request for 
the Command and Control component. For 
example, if the data assimilation system 
requests more observations of the jet stream and 
simultaneously a scientist requests higher 
fidelity measurements of a severe weather 
outbreak over Kansas, the External Control will 
attempt to satisfy both requests based upon its 
knowledge of the future positions of satellites, 
best opportunities for cloud-free measurements, 
etc.

6. Command and Control: performs the 
scheduling and issues the necessary commands 
to modify the normal behavior of an asset (e.g., 
switch to high data-rate collection).

A more detailed description of the sensor web 
concept and the components of the simulator are 
discussed in Seablom, et. al (2007).

Wind Lidar Use Case

To help guide the design of the SWS, a “zeroth-
order” simulation was set up and executed that 
tested the use of model-directed observations. The 
experiment used synthetic observations based upon 
the proposed Global Wind Observing Sounder 
(GWOS) lidar mission (Kakar, et. al, 2007). Most of 
the major elements of the simulator were engaged,  
the exceptions being the command and control 
component and the simulator architecture or 
workflow control. The components were run 
manually and sequentially, and the lessons learned 
would provide input for the final architectural 
design. This process has already provided valuable 
information regarding the end-to-end data flow 
requirements. 

In order to obtain complete vector wind components 
GWOS must sample an air parcel from at least two 
different perspectives. The instrument is comprised 

of multiple coherent and direct detection lidars that 
have the ability to operate through four telescopes. 
Two of the telescopes are oriented nominally ±45° 
in both azimuth and elevation pointing in front of 
the spacecraft, with the other two similarly oriented 
pointing aft. The combination of the fore and aft 
line-of-sight shots produce an estimated vector 
wind for multiple vertical levels. As currently 
designed the instrument can perform approximately 
300 million shots in its lifetime with a pulse rate of 
5Hz and 100Hz for the coherent and direct 
detection laser subsystems respectively.

Using sensor web concepts we investigated a 
modification to the GWOS operations that would 
(1) minimize the required number of lidar shots 
without compromising information of the 
atmospheric state, and (2) target data collection for 
specific regions of the atmosphere that would 
potentially have the greatest impact on forecast 
skill. For (1) GWOS would be provided the first 
guess wind field from a global forecast model. 
Observed line-of-sight winds from the GWOS “fore 
shot” would be compared with the predicted winds 
from the model and valid at the time of the 
observation. If the winds were considered to be in 
adequate agreement the aft shot would not be 
performed. If such agreement were ubiquitous there 
could be a substantial reduction in the lidar’s duty 
cycle and potentially extending the life of the 
instrument. For (2) we would use estimates of the 
model’s forecast error to direct GWOS to target 
those regions of the atmosphere estimated to be in a 
state of low predictability, and/or target sensible 
weather features of interest. We assume to capture 
the maximum number of targets would require 
slewing of the spacecraft. 

Results of Tests

We emphasize that at this stage of the project the 
purpose of the stated experiments is to help design 
the simulator, and is not meant to draw definitive 
conclusions regarding the configurations (1) and 
(2). In the third year of the project we intend to 
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conduct a more formal observing system simulation 
experiment (OSSE) under the direction of a senior 
scientist and under the review of the NASA Global 
Modeling and Assimilation Office (GMAO).

Through our partnership with Simpson Weather 
Associates, Inc., we acquired a sufficiently large 
sample of simulated lidar data. This comprised an 
approximate 50-day sample of u- and v-wind 
components from a simulated conical-scanning 
lidar, and was properly sub-sampled to simulate the 
exact look angles that would be available from 

GWOS (Figure 3). For data analysis, which made 
use of NOAA’s Gridpoint Statistical Interpolation 
(GSI), the lidar’s observation errors were defined to 
be identical to those used for rawinsondes.  For (1) 
we set up a control case which used no lidar data, a 
case in which lidar data were used only where there 
was “significant” disagreement with the forecast 
winds, and a case in which all lidar data were used. 
Because the current version of the GSI does not 
support assimilation of line-of-sight winds our 
experiment made use of only vector wind 
components. For operations this would be 
undesirable but for the purpose of (1), i.e., design of 
the overall architecture, we believe the assumption 
is acceptable. The model’s first guess u- and v-wind 
components were therefore compared to the 
simulated lidar u- and v-wind components.  Where 
the differences were within a pre-defined value (ε) 
data were withheld from the assimilation process, in 

Figure 3.  Sample configuration of simulated lidar data.

essence “turning off” the aft shot. Changing the 
values of ε would allow mission designers to weigh 
the benefit of reducing the lidar’s duty cycle against 
the overall impact to the science (i.e., predictive 
skill or another quantifiable metric).

A 20-day period was selected for executing the 
three configurations. Five day forecasts were 
launched from each of the 00Z assimilation periods. 

In the targeting configuration we defined ε=1.0ms-1,  
thus removing any lidar data in which the 
“observed” wind was within 1ms-1 of the model’s 
first guess value. The net effect of this is depicted in 
Figure 4. For this sample period nearly 80% of the 
data met the criterion and were prevented from 
being included in the data assimilation cycle. In 
operations this would translate to a duty cycle 
reduction of about 30% (the minimum duty cycle 
would be 50% with the fore shots taken 
continuously). To test whether the duty cycle 
reduction had any negative impact on the forecast 
skill we employed the commonly-applied  anomaly 

∑(F-C)(O-C)

 ( ∑(F-C)2 )½ ( ∑(O-C)2 )½
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Figure 4.  Lidar data following removal of observations 
based upon ε ≤ 1 ms-1. Data shown is for the 
assimilation period 12 September 1999, 12UTC. Blue 
points indicate a coherent shot, green are direct, and red 
are both. 

(Eq. 1)



correlation (eq. 1), where F is the 500 hPa forecast, 
C is the climatological value, and O is the observed 
value. Applying the anomaly correlation for (1) 

produced the results shown in figure 5.

Not surprisingly, the full lidar set has the highest 
correlation while the control set (no lidar data) has 
the worst. When the targeted data were deleted from 
the assimilation the Northern Hemisphere results 
indicate little degradation; for the Southern 
Hemisphere (not shown) the results are more 
ambiguous.

For (2) we conducted a set of experiments to 
examine the impact of slewing GWOS for adaptive 
targeting. This included identifying so-called 
“sensitive regions” in the atmosphere (regions 
where the forecast is highly responsive to analysis 
errors) and autonomous detection of features of 
interest (e.g., tropical cyclones and jet streaks). To 
calculate the sensitive regions of the atmosphere 

adjoint techniques have proven to be successful 
(Leutbecher and Doerenbecher, 2003). Our work 
plan includes the eventual incorporation of the 
adjoint technique that is now under development by 
GMAO scientists. Acknowledging the time 
constraints for the test case, we employed a less 
sophisticated method that calculated the difference 
between two 500hPa1 height forecast fields at 12-
hour and a 36-hour verification times. If the 
atmosphere was in a perfectly predictable state the 
difference between the two forecasts should be 
zero. Figure 6 depicts the results of this effort, with 
the 500hPa field from the 12hr forecast in the black 
contours and “large” difference between the two 
forecasts in color shading. The latter would be used 
to make targeted observations with the lidar by 
slewing the spacecraft into an off-nadir mode for 
the purpose of capturing as many of the sensitive 
regions as possible.

Figure 6.  Differences between two forecasts launched 
72 hours apart and valid at the same forecast hour 

(“large” values are shaded). The 500hPa height field is 
also displayed (contours) for one of the forecasts.

To demonstrate the functionality of the External 
Control component we also included a set of rule-
based targets. These targets are based upon sensible 
weather and are depicted in Table 1. The targets 
were prioritized in the order of the following 
subcategories:
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1 The height of the 500 hectopascal pressure layer, roughly half the weight of the atmosphere, usually 5-6km above 
sea level.

Figure 5.  Lidar data following removal of observations 
based upon ε ≤ 1 ms-1. Data shown is for the 
assimilation period 12 September 1999, 12UTC, 
Northern Hemisphere only.
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1. Feature is over land

2. Feature is over the coastline

3. Feature is over ocean but is approaching land

4. Feature is over ocean and is moving away from land

5. Feature is over ocean and is far from land ( > 
1000km )  

Feature - 
Description

Threshold Ranking

Tropical Cyclones All discernable 1

Extratropical 
Cyclones

< 980 hPa 2

Thermal 
Advection 
Centers

> 0.25 K/hr at 
850 hPa

3

Jet Centers > 50m/s above 
500 hPa; > 35 
m/s below 500 

hPa

4

Deepening 
Centers

> 0.5 hPa/hr 5

To emulate the effects of slewing we generated 
additional synthetic lidar data that were positioned 
±150km off the nadir viewing angle of the 
instrument.   The results of applying targeting and 
slewing are shown in Figure 7, which indicates the 
results if right and left slewing were performed. For 
this experiment approximately 33% additional data 
were captured over the targeted features.

Summary of Experiments
The investigations described here are intended to 
provide examples of how the simulator would be 
used to explore mission formulation, alternatives 
and, eventually, to support on-orbit mission 
operations. The lessons learned from the manual 
execution of the major elements will be used during 
the second year of the project to guide the final 
design and for constructing the final prototype. 
Although the results of these experiments have not 
been scientifically validated, they demonstrate that 
the types of “what if” scenarios likely to be 
performed by investigators making use of the 
simulator have a significant impact on predictive 
skill of the forecast model. 
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