Status of the TWiLiTE airborne molecular Doppler lidar project

Bruce Gentry\(^1\), Matthew McGill\(^1\), Geary Schwemmer\(^2\), Michael Hardesty\(^3\), Alan Brewer\(^3\), Thomas Wilkerson\(^4\), Robert Atlas\(^5\), Marcos Sirota\(^6\), Scott Lindemann\(^7\), Floyd Hovis\(^8\)

\(^1\) NASA Goddard Space Flight Center, Laboratory for Atmospheres, Code 613.1, Greenbelt, MD 20771
\(^2\) Science Engineering Services Inc, Columbia MD
\(^3\) NOAA ESRL, Boulder CO
\(^4\) Utah State University Space Dynamics Laboratory, Logan, UT
\(^5\) NOAA AOML, Miami FL
\(^6\) Sigma Space Corp, Lanham MD
\(^7\) Michigan Aerospace Corporation, Ann Arbor, MI
\(^8\) Fibertek Inc, Herndon, VA

ABSTRACT
The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) is a three year program to advance the technology readiness level of the key technologies and subsystems of a molecular direct detection wind lidar system by validating them, at the system level, in an integrated airborne lidar system. The TWiLiTE Doppler lidar system is designed for autonomous operation on NASA high altitude research aircraft such as the WB57 or ER-2. These aircraft are capable of flying well above the mid-latitude tropopause so the downward looking lidar will measure complete profiles of the horizontal wind field through the lower stratosphere and the entire troposphere. The completed system will profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and a velocity precision of < 3 m/s. In this paper we will describe the new technologies developed as part of the TWiLiTE program and present an update on the status of the airborne lidar system development.

1. Introduction –
In the summer of 2005 the Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected by NASA’s Earth Science Technology Office as part of the Instrument Incubator Program. The objective of the TWiLiTE program is to develop the key technologies and subsystems of a molecular direct detection Doppler wind lidar and integrate them into an airborne testbed to validate, at the system level, both the technologies and the measurement approach. In this paper we will describe the new technologies that are in development as part of TWiLiTE. These technologies include the laser transmitter, Doppler receiver, high resolution optical filters and conical scanning telescopes all designed for efficient operation in the ultraviolet at 355 nm.

To realize the full benefit of the demonstration, the target platform is one of the NASA high altitude aircraft including the WB57 and ER-2. Both of these aircraft fly at altitudes > 18 km so that the nadir viewing lidar will be able to profile winds through the full troposphere. This will provide a capability to simulate the downward viewing geometry of the

<table>
<thead>
<tr>
<th>Table 1-TWiLiTE Instrument parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>HOE Telescope/Scanner Aperture</td>
</tr>
<tr>
<td>Laser Linewidth (FWHH)</td>
</tr>
<tr>
<td>Laser Energy/Pulse</td>
</tr>
<tr>
<td>Laser pulse rep frequency</td>
</tr>
<tr>
<td>Etalon FSR</td>
</tr>
<tr>
<td>Etalon FWHH</td>
</tr>
<tr>
<td>Etalon Peak Transmission</td>
</tr>
<tr>
<td>Interference filter BW (FWHH)</td>
</tr>
<tr>
<td>PMT Quantum Efficiency</td>
</tr>
</tbody>
</table>

spaceborne lidar and to investigate the effects of clouds, aerosols and other atmospheric phenomena on the measurement. The TWiLiTE project represents a
critical milestone on the path to a future spaceborne
tropospheric wind system [1]. The TWiLiTE program
objectives are consistent with the NASA technology
development roadmaps for both direct detection and
hybrid (combined direct and coherent) Doppler lidar
spaceborne wind lidar implementations. The TWiLiTE
airborne scanning direct detection molecular Doppler
lidar system will be the first of its kind, and as such, can
be flown as a stand alone instrument or with existing, or
future, aerosol Doppler lidars to explore the potential
synergies of data products, systems and shared
technologies of the hybrid approach.

The TWiLiTE project is a collaboration involving
scientists and engineers from NASA Goddard Space
Flight Center, NOAA, Utah State University Space
Dynamics Lab, Michigan Aerospace Corporation,
Fibertek Inc and Sigma Space Corporation. The
TWiLiTE instrument will be the first demonstration of
an airborne scanning direct detection Doppler lidar and
will serve as a critical milestone on the path to a future
spaceborne tropospheric wind system. In addition to
being a technology testbed for space based tropospheric
wind lidar, when completed the TWiLiTE high altitude
airborne lidar will be used for studying mesoscale
dynamics and storm research (e.g. winter storms,
hurricanes) and can be used for calibration and
validation of satellite based wind systems such as
ESA’s Aeolus Atmospheric Dynamics Mission [2].
The TWiLiTE Doppler lidar will have the capability to
profile winds in clear air from the aircraft altitude of 18
km to the surface with 250 m vertical resolution and < 2
m/s velocity precision.

2. TWiLiTE Design and Description –

The TWiLiTE Doppler lidar is a molecular direct
detection system operating at a wavelength of 355 nm.
The lidar system is composed of four major
subsystems: 1) the single frequency pulsed laser
transmitter; 2) The transceiver telescope and scanner; 3)
The Doppler receiver and 4) the Command and Data
Handling electronics that control the instrument
functions and acquire and store the science data. System
level integration of these components requires
definition of mechanical, electrical, optical and thermal
interfaces between the subsystems and from the system
to the platform, in this case the WB57 aircraft. A
common mechanical structure and electrical power
distribution system is also being developed. A final
requirement is the control interface. To be compatible
with the WB57 or ER2 aircraft, which do not offer the
option of flying an operator, the TWiLiTE Doppler
lidar is designed to be fully autonomous in operation.
There are only the top level commands to power the
instrument on or off; allow or inhibit the laser firing and
begin data acquisition. All other functions are
controlled internally in flight.

To profile winds, the lidar is mounted in a nadir
viewing orientation and the co-aligned transmit and
receive paths are pointed off nadir at an angle of 45
degrees. The 355 nm laser pulse is transmitted to the
atmosphere and a fraction of the energy is backscattered
from molecules and aerosols back towards the lidar.
The backscattered signal is collected by the telescope
and directed to the Doppler receiver which analyzes the
signal to determine the frequency shift introduced by
the mean velocity of the scattering particles. The
measured wind speed is the component of the
horizontal wind velocity projected on the line of sight
of the laser. In order to measure the u, v components of
horizontal wind field the lidar is required to scan in
azimuth in order to obtain radial winds from multiple
directions. The multiple azimuth perspectives provide
the necessary information to determine profiles of the
horizontal wind field.

TWiLiTE is a direct detection Doppler lidar designed to
measure winds using the signal backscattered by
molecules. The Doppler frequency shift is measured
with a molecular double edge receiver implemented in a
design that is similar to those described previously
[3],[4]. The double edge method utilizes two high

![Double Edge measurement concept. The two edge filter channels are shown symmetrically located about the outgoing laser frequency in the wings of the thermally broadened molecular backscattered spectrum.](image-url)
molecular and aerosol backscattered spectrum is shown for reference.

To make the wind measurement, the two edge filter channels sample the intensity in the wings of the thermally broadened Rayleigh-Brillouin molecular backscattered spectrum. The ratio of the two edge filter transmission measurements will change in proportion to the speed and direction of the wind. Precise knowledge of the filter characteristics, detector properties and receiver optical throughput is obtained in calibration. The outgoing laser frequency is also measured to provide a zero Doppler reference.

The molecular system operates in the ultraviolet at 355 nm in order to take advantage of the λ^{-4} dependence of the molecular scattering. Many of the design elements of the TWiLiTE lidar have been demonstrated and validated in ground-based lidar measurements [5]. The TWiLiTE lidar system baseline performance characteristics are summarized in Table 1.

The transmitter is a single frequency, Nd:YAG laser frequency tripled to the third harmonic wavelength. The laser pulse energy is nominally 35 mJ at 355 nm and the pulse repetition frequency is 200 Hz. In order to obtain single frequency, narrowband output pulses the laser is injection seeded using a ramp-and-fire resonance locking technique [6]. The ramp and fire technique is particularly suitable for airborne operation as it is relatively insensitive to vibration.

The laser is a master oscillator power amplifier (MOPA) configuration designed and built by Fibertek, Inc. The design has heritage to the High Brightness Laser, a NASA SBIR project that Fibertek completed in 2003. Since that time Fibertek has built several generations of this type of laser. Figure 2 shows a view of completed laser. The laser optics module is the gold irradiated pressure canister shown to the right and the laser electronics unit is the black box on the left. The laser optics module has dimensions of 31 cm x 25 cm x 14 cm. The laser draws about 480 W of electrical power from the aircraft 28V supply.

Figure 2 - Single frequency 355 nm Nd:YAG laser (gold) and Laser electronics unit (black)

The telescope and conical scanning functions are accomplished with a 38 cm clear aperture, rotating holographic optical element (HOE) transceiver [7]. The HOE transceiver subsystem performs both functions of transmitting the laser beam and receiving the atmospheric backscattered signal. The TWiLiTE transceiver, shown in Figure 3, contains a 40-cm diameter rotating HOE, laser beam steering and collimating optics, and a fiber optic interface to the Doppler receiver. The HOE aperture determines the receiver collecting area. The lidar measures the Doppler shift of the component of the wind projected on the line-of-sight of the laser beam. In order to resolve the horizontal wind the HOE telescope is designed to direct the beam at a nadir angle of 45°. Rotation of the HOE repeatedly sweeps the transmitted laser beam and the receiver’s FOV through a 45° cone about the axis of rotation. The scanner will step in azimuth to specified angles, typically 8 to 16 positions per scan cycle. After moving and settling to each fixed azimuth position the system will integrate signal for a period of 10 seconds (2000 laser shots). The backscattered signal collected by the HOE will be focused to a 200 micron core diameter multimode fiber optic which brings the collected signal to the Doppler receiver.

In the Doppler receiver, the collected signal is split into a total of four channels. Three of these beams are directed along parallel paths through a high spectral resolution tunable Fabry-Perot etalon which is used as the edge filter. As shown in Figure 4, the etalon has three sub-apertures corresponding to the filter bandpass functions labeled Edge1, Edge2 and Locking in Figure 1. The etalon channels have slightly different bandpass
center frequencies but otherwise nearly identical optical properties e.g. peak transmission, finesse, free spectral range. The separation of the two edge filter center wavelengths is chosen so the velocity sensitivity of the broader molecular signal, defined as the change in the ratio of the two edge channel transmittances for a Doppler shift of 1 m/s, is equal to the velocity sensitivity of the narrower aerosol signal. Matching the velocity sensitivities in this way greatly reduces the effects of aerosols on the wind measurements. The two etalon ‘edge’ channels have PMTs operating in photon counting mode. These channels provide the information used in the atmospheric Doppler shift measurement. The locking etalon peak is located such that the outgoing laser frequency is aligned to the half height point of the locking filter bandpass. This third etalon channel is used to sample the outgoing laser frequency and will be used as a reference in the Doppler shift measurement to correct for small frequency drifts of the laser or etalon. The fourth channel is an energy monitor used to provide intensity normalization of the respective etalon channels. In each of the detector channels there are three Hamamatsu photomultiplier tubes sharing the incoming signal to that channel in the intensity ratio of 90:9:1. This arrangement allows the signal dynamic range of the photon counting PMT’s to be increased by two orders of magnitude. When the signal on the high signal detector (90%) exceeds the maximum incident counting rate of 50 Mcts, the signal from that detector can be excluded from the wind analysis. The photon counting signals are binned in a multi-channel scalar, integrated for a selectable number of shots and stored.

These subsystems comprise the working elements of the TWiLiTE lidar system. In Figure 5 the subsystems are shown integrated on a mechanical structure compatible with the WB57 aircraft payload pallet. The laser and telescope are rigidly mounted to an optical bench to maintain bore sight and alignment. The instrument pallet also includes the laser electronics, command and data handling electronics, thermal management system and power distribution and control system. The estimated mass of the instrument is 515 lbs

3. TWiLiTE Development Status

The TWiLiTE IIP project officially will end on August 1, 2008. The last of the major design reviews, the Critical Design Review, was completed on May 1, 2007. The major subsystem deliveries began in June, 2007 with the delivery of the etalon and controller, followed by the HOE telescope and Doppler receiver. The final stage of the IIP project involves ground testing of the subsystems, completion of the command

Figure 4 - The TWiLiTE Fabry Perot etalon (left) has three sub-apertures with bandpasses separated in frequency to produce the molecular double edge measurement arrangement described in the text. The three spectral regions are clearly seen in the full fringes image of the Fabry Perot circular ring pattern shown on the right.

Figure 5 - Two views, side/top and side/bottom, of the TWiLiTE lidar system integrated on the WB57 three foot pallet.
and data handling hardware and software and integration of all the modules into the complete instrument package. At that point in time we will be ready for the initial flight testing of the instrument.

4. Summary

The design features and key technologies being developed as part of the Tropopsheric Wind Lidar Technology Experiment (TWiLiTE) IIP project have been described. The TWiLiTE airborne lidar will present several new and challenging problems. A major challenge in the TWiLiTE design is integrating the instrument technologies into an end-to-end Doppler lidar system that functions autonomously in a relatively demanding environment. The WB57 payload bay is not environmentally controlled and temperatures on the ground may be greater than +40 degrees C while at altitude the temperature may be as low as -70 degrees C in the free air stream. Pressure at altitude will be 35 mbar. As of February 2008, all major subsystems including the laser, telescope, etalon and Doppler receiver are completed. Integration of the TWiLiTE instrument and ground characterization and testing will be completed in 2008.

5. Acknowledgements

The TWiLiTE project is funded by the NASA Earth Science Technology Office. We also wish to acknowledge the support of Dr. Ramesh Kakar of NASA HQ.

References -

