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Abstract — We describe the second year of work on an inte-
grated system for intelligent compression and transmission of co-
pious data acquired by spaceborne instruments. At its core, our
system contains a wavelet-based progressive image compression
algorithm, ICER. Our modified version, ROI-ICER, accepts in-
put priorities measuring the relative importance of various “re-
gions of interest” in the source data, and tags its output packets
to reflect both the regional priorities and the wavelet bit layer
priorities.

The output of the data compression module is supervised by
an intelligent buffer manager that receives prioritized packets
from many different source images and tries to select packets
for transmission that will maximize the total science value of the
data received on the ground. Our baseline buffer manager uses
a simple form of double-valued prioritization: admissions and
discards are determined by priorities established by ROI-ICER,
while transmissions are first-in, first out (FIFO) among packets
that survive the admission/discard process during their time of
residency in the buffer.

Extensions of the baseline classification and prioritization al-
gorithms now cover more realistic earth science scenarios, in-
cluding applications with multispectral data. Extensions to ROI-
ICER incorporate a new data model and compression engine.
Improvements to the buffer manager handle dynamically chang-
ing priorities. A buffer state parameter can be fed back to save
ROI-ICER from performing unnecessary computations.

Various theoretical advances are being evaluated for inclu-
sion in the mainline software: algorithms to optimize quantiz-
ers for feature compression and classification for prioritization
feedback, based on a criterion trading off rate, distortion and
complexity; improvements to the Mallat distortion model that
yield better analytical model-based bit allocations for optimizing
region-of-interest coding; and a new buffer control criterion that
can approximately match both the minimum worst-case distor-
tion achieved by a minimax criterion and the minimum average
squared distortion achieved by a minimum mean squared error
criterion.

This work was funded by the ESTO Technology Program and performed
at the Jet Propulsion Laboratory, California Institute of Technology, at the
Signal and Image Processing Institute, Integrated Media Systems Center,
University of Southern California, and at the Computer Engineering Depart-
ment, University of California, Santa Cruz.

I. THE BASELINE SYSTEM

We are in the second year of a three-year project to develop
integrated data compression and buffer management algorithms to
maximize the science value of data returned from spacecraft instru-
ments [1]. Our approach is to adapt existing progressive compression
algorithms to make use of identified “regions of interest” (ROIs) in
the data, and to develop buffer strategies for prioritizing, storing, and
delivering the most valuable compressed segments, and later recon-
stituting the original data. Our system incorporates ROI considera-
tions across many images or different data types. The algorithms are
subject to practical limits on the onboard computer’s speed, memory,
and storage.

At its core, our data compression system contains a wavelet-based
progressive image compression algorithm, ICER [2], that is being
used on the Mars Exploration Rover (MER) mission. The ICER al-
gorithm applies a wavelet decomposition and prioritizes the com-
pressed bit layers from the wavelet subbands so as to progressively
transmit the layer that gives the largest estimated improvement in
image quality per transmitted bit. Our modified version, ROI-ICER,
accepts additional input priorities in the form of a data prioritization
map that gives the relative importance of different regions of inter-
est in the source data. Then ROI-ICER produces output packets of
compressed data along with priority labels that reflect both the input
regional priorities and the wavelet bit layer priorities.

The output of the data compression module is supervised by an in-
telligent buffer manager that receives prioritized packets from many
different source images and tries to select packets for transmission
that will maximize the total science value received on the ground.
Just as importantly, it attempts to discard only the least valuable
packets when the buffer overflows (which is inevitable if the aver-
age data transmission rate is lower than the average data collection
rate). Our buffer manager uses a simple form of double-valued prior-
itization: admissions and discards are determined by priorities estab-
lished by ROI-ICER, while transmissions are first-in, first out (FIFO)
among packets that survive the admission/discard process during
their time of residency in the buffer. The FIFO protocol for trans-
missions keeps intact the chains of compressed data packets that are
later used to progressively reconstruct each image or image segment,
yet the prioritized decisions on admissions and discards ensure that
the scarce downlink resource is not clogged by less valuable data.
Using a FIFO transmission priority eliminates the need to unshuffle
the packets received on the ground, because successive (truncated)
packet chains can be used to reconstruct the source images in the
same order in which they were acquired (but to different levels of
distortion depending on how many packets from each chain survived



the prioritized admission/discard process).

II. IMPROVEMENTS TO THE BASELINE SYSTEM

In this section we describe several recent improvements to our base-
line system. Extensions of the baseline classification and prioriti-
zation algorithms now cover more realistic earth science scenarios,
including applications with multispectral data. Extensions to ROI-
ICER incorporate a new data model and compression engine. Im-
provements to the buffer manager apply the double-valued priority
queue model to handle dynamically changing priorities, and permit
feedback of a buffer state parameter to save ROI-ICER from per-
forming unnecessary computations.

A. DATA CLASSIFICATION AND PRIORITIZATION

Our baseline (color-based) image classification algorithm is be-
ing extended to cover more interesting or sophisticated earth sci-
ence classification scenarios. Prioritization is particularly effective
for missions that are well-targeted in terms of data usage and science
goals. One such application is crop monitoring using multispectral
aerial imagery [3, 4]. This is an area of intense current research,
given its potential for agricultural applications. We are looking at
an ongoing NASA-sponsored project [5] for coffee harvesting opti-
mization using imagery from airborne cameras on a solar-powered
unmanned aerial vehicle (UAV). The UAV has two multispectral
(3-band), high-resolution (4072 × 4072 pixels) cameras. A sample
image is shown in Fig. 1. This project1 represents a typical scenario

Figure 1: Example of a coffee field image from the UAV.

where priorities can be assigned to image segments in a rather unam-
biguous manner.

For this application a two-stage classification system is effective.
A first-stage classifier based on color, texture, and shape can identify
the large-scale areas of interest (i.e., the coffee orchard areas) and
distinguish them from uninteresting areas such as roads and tracts

1More information about this project, led by Stan Herwitz at Clark Univer-
sity, can be found at http://www.clarku.edu/research/access/geography/her-
witz/herwitzD.shtml. We are grateful to Lee Johnson of California State Uni-
versity, Monterey Bay, and NASA Ames Research Center, for providing us
with information about the project and with sample aerial pictures (including
the image in Fig. 1) taken during preliminary tests in Kauai.

of houses. Then a second-stage classifier with additional fine-detail
recognition based on multispectral and geometric analysis can iden-
tify individual rows of plants by distinguishing pixels belonging to
the sunlit canopy from pixels corresponding to soil or shaded vege-
tation. The results of such a two-stage classification scheme applied
to the image in Fig. 1 are shown in Fig. 2. The information from the

Figure 2: Two-stage prioritization scheme for coffee field im-
age: a first-stage classifier identifies orchard areas, then a
second-stage classifier identifies the sunlit canopy within the
orchards.

sunlit canopy provides the best data for characterizing the state of
the coffee plants, and should be given the highest priority. The infor-
mation from the soil and the shaded vegetation is less useful, and is
assigned an intermediate priority.

The image prioritization algorithms for this scenario exploit a
number of different visual cues. We are using both pixel-wise pho-
tometric information from the 3-band cameras and spatial pattern
analysis. Vegetation indices (computed by suitable ratios of the color
value in different channels) are useful to determine whether a pixel
belongs to a vegetated surface, although they are not very reliable in
the case of shadows or inter-reflections. Texture feature segmenta-
tion and line or edge detection may be very powerful for determining
the boundaries of orchards, which typically appear as regular spatial
patterns. To combine the two types of visual features (photometric
and textural), we are developing robust statistical algorithms based
on the Bayesian fusion of classifiers [6]. A characteristic of this ap-
proach is that independent classifiers can be developed for different
features (allowing one to exploit physical or statistical models that
are peculiar to each feature), and then combined together according
to a simple yet statistically sound rule.

B. DATA COMPRESSION

Sophisticated strategies are being developed to handle multispec-
tral images with identified regions of interest. As described in [1],
the baseline ROI-ICER exploits correlations in 3-band color RGB
images by transforming them to the YCrCb domain. The generaliza-
tion of this procedure for multispectral data is to apply a decorrelat-
ing transform in the spectral dimension, then process the transformed
components independently. With multispectral data it is also impor-
tant to generalize the notion of regions of interest to cover not just
spatial regions but also regions of interest in the frequency dimen-
sion, assigning higher priorities to some spectral bands

Many recent improvements to the ICER compression software are
being implemented in the new version of ROI-ICER. ICER has been
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re-engineered to provide improved compression effectiveness in a
number of ways [2]. It incorporates a sophisticated data model and
compression engine to more effectively compress the wavelet trans-
formed data. It also includes a reorganized output data structure that
simplifies the implementation of error containment strategies to limit
the effects of packet losses.

ICER employs a technique known as context modeling in its en-
coding of the bit planes of wavelet-transformed data. Before encod-
ing a bit in the transformed image, the bit is classified into one of sev-
eral contexts based on the values of previously encoded bits. These
bits are from the pixel being encoded and nearby pixels, and include
the bits previously encoded from the current bit plane as well as bits
from previous (more significant) bit planes. The probability that the
bit to be encoded is a “0” is estimated based on the encoder’s pre-
vious experience with bits classified into the same context. The bit
is then encoded based on this probability estimate, as described be-
low. Since the probability estimate relies only on previously encoded
information, the decoder can duplicate this calculation and produce
the same probability estimate, which is essential for proper decod-
ing. ICER uses a reasonably low-complexity scheme for classifica-
tion into contexts: it needs only two small lookup tables, is based on
simple properties of the pixel being encoded as well as the 8 nearest-
neighbor pixels, and yields one of 18 contexts. This scheme is similar
to the context model used by JPEG 2000 [7].

Compression of the bits is accomplished with an adaptable en-
tropy coder. The entropy coder takes the sequence of bits to be en-
coded, along with probability estimates obtained from the context
modeler, and produces a compressed bit stream from which the orig-
inal sequence of bits can be reconstructed. ICER uses a technique
called interleaved entropy coding [8, 9, 10] that has the same func-
tionality as arithmetic coding, which is the current state-of-the-art
in adaptable entropy coding (used, for example, in JPEG 2000 [11]).
Both methods achieve excellent performance (within 1% of the theo-
retical limit in typical applications), but the interleaved entropy coder
can be implemented with particularly low complexity, and so is well-
suited for space applications where speed is of critical importance.

Error containment can provide some protection against corruption
from packet losses that arise on the communications channel. With-
out error containment, a single packet loss due to channel errors can
corrupt large segments of compressed data. To achieve error contain-
ment, ICER produces the compressed bitstream in separate pieces or
segments that can be decoded independently. These segments repre-
sent rectangular regions of the original image, but are defined in the
transform domain2. ICER provides flexibility in choosing an appro-
priate number of error containment segments, since this choice in-
volves trading off compression effectiveness against packet loss pro-
tection, thereby accommodating different packet loss rates. Dividing
an image into a large number of segments can confine the effects of
a packet loss to a small area of the image, but it is generally harder
to compress smaller image segments effectively. However, increas-

2The alternative method, to apply the wavelet transform separately to each
segment of a partitioned image, is less desirable because the boundaries be-
tween segments would be noticeable in the reconstructed image after lossy
compression even when no packet losses occur. By segmenting the image in
the transform domain, we can virtually guarantee that such artifacts will not
occur. There are also secondary benefits: we achieve better decorrelation by
applying the wavelet transform to the entire image at once, and it is easier to
maintain a similar image quality in the different segments. A minor side ef-
fect is that the effect of data loss in one segment can appear to “bleed” slightly
into adjacent segments.

ing the number of segments can improve compression effectiveness
when disparate regions of the image end up in different segments.

The current version of ICER does not attempt to draw the par-
tition boundaries so that they contain disparate regions. Small im-
provements in the compression efficiencies of individual segments
may be offset by the increased overhead needed to describe complex
segmentations. With ROI-ICER, however, there is increased moti-
vation to match the partitioning of the image for error containment
purposes to an (approximate) partitioning imputed by the classifica-
tion algorithms, so we will have to study in more detail the tradeoffs
that arise from increasing the complexity of segmentation.

C. BUFFER MANAGEMENT

We ran simulations under different loading conditions to evalu-
ate the performance of the baseline buffer manager. The simula-
tions modeled Poisson or constant-rate arrivals of compressed packet
chains of varying lengths from a set of test images, together with a
constant transmission rate. Fig. 3 shows an example of a histogram
of priorities of packets transmitted, blocked, or discarded from the
buffer when the buffer was presented with a load factor of 6 Er-
langs (an average of 6 packets arriving for each packet transmitted).
We found that, for all loading conditions simulated, the buffer man-

Figure 3: Example of the buffer manager’s performance.

ager almost always transmits the most important data permitted by
the loading. In the example of Fig. 3, the cutoff priority for trans-
mission, determined by the load factor, is approximately at priority
value 6. In this case, only a small number of packets with priority 6
are discarded, and only a small number of packets with priority 5
are transmitted. Our double-valued priority queue is very efficient at
sifting through all the packets and making sure that the downlink is
filled with only the highest-value packets that fit. Furthermore, we
see from Fig. 3 that most of the untransmitted packets are “blocked”
before they can ever be admitted to the buffer. The relatively few
packets discarded after admission are generally closer in priority to
those transmitted. This indicates that our baseline buffer manager’s
computational resources are devoted mostly to the borderline deci-
sions, while the easy decisions are dispatched quickly.

This efficiency can be carried one step further if the buffer man-
ager feeds back information to ROI-ICER on its current cutoff pri-
ority value for admissions. There is little reason for ROI-ICER to
devote its computational resources to producing low-priority pack-
ets that will almost certainly be discarded. ICER itself has a new
built-in capability to stop computing compressed data packets when
an “image quality” requirement is satisfied. This feature will allow
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ROI-ICER to monitor the state of the buffer and stop producing the
lowest priority packets.

Another measure of the buffer manager’s performance is its trans-
mitted packet delay distribution, as illustrated in Fig. 4. Delay is the

Figure 4: The buffer manager’s packet delay distribution.

time between arrival and transmission of transmitted packets. Un-
der a FIFO transmission protocol, the maximum possible delay for
every transmitted packet equals the size of the buffer divided by the
(constant) transmission rate (denoted arbitrarily by 1000 in the fig-
ure). Under the prioritized discard rule, a given packet’s transit time
through the buffer is reduced every time a lower priority packet is
ejected from a position further ahead in the queue. However, if a rel-
atively small fraction of packets are discarded after admission (as in
Fig. 3), then the delay for most packets will be close to the maximum
and nearly constant (as in Fig. 4).

The buffer manager’s primary policing job is to ensure that un-
worthy packets have little opportunity to sneak into the downlink
channel during a period of very few high-priority arrivals. With a
plain FIFO transmission protocol, low-priority packets will neces-
sarily be transmitted if a packet’s transit time through the buffer is
less than the duration of an extended series of low-priority arrivals.
Thus, it is important to make the buffer large enough that a packet’s
residency time under the FIFO transmission protocol is long enough
to average out the normal fluctuations in the priorities of arriving
packets.

A modification of the FIFO transmission protocol can allow the
buffer manager to respond to dynamically changing priorities. The
buffer manager can accomplish this by setting aside, but not dis-
carding, data segments whose ultimate value is still in limbo at the
time they would normally reach the front of the transmission queue.
Packets routed to the secondary “set-aside” queue can rest there un-
til more information is available to decide their fate. The motiva-
tion for establishing the set-aside queue is to preserve the simplic-
ity of the FIFO queue for the vast majority of packets that require
no reevaluation. Effective operation of the set-aside queue requires
much more intricate logic than that governing the FIFO queue. Pack-
ets with significantly changeable priorities should be flagged so they
can be yanked from the FIFO queue or rescued from the trash. Such
packets constitute the set-aside queue’s arrivals. Departures from the
set-aside queue occur when a packet’s priority is deemed to be final.
Such departures can be to the trash, to the downlink, or to the back of
the FIFO queue. The last option eliminates any need for the primary

FIFO queue to time-share the downlink with the secondary set-aside
queue.

III. ADDITIONAL THEORETICAL ADVANCES

Various theoretical advances are being evaluated for inclusion in
the mainline software: algorithms to optimize quantizers for feature
compression and classification for prioritization feedback, based on a
criterion trading off rate, distortion and complexity; improvements to
the Mallat distortion model that yield better analytical model-based
bit allocations for optimizing region-of-interest coding; and a new
buffer control criterion that can approximately match both the mini-
mum worst-case distortion achieved by a minimax criterion and the
minimum average squared distortion achieved by a minimum mean
squared error criterion.

A. ENTROPY- AND COMPLEXITY-CONSTRAINED CLASSIFIED

QUANTIZATION DESIGN FOR IMAGE CLASSIFICATION 3

Our previous work [1, 12] concentrated on feature compression
and classification for prioritization feedback. We proposed to repre-
sent image regions by a feature set and then to compress this feature
set and to transmit it through the downlink to the ground. A prior-
ity is assigned to the corresponding region by performing a search in
the database using the compressed feature. We showed that, rather
than simply compressing the features for full classification on the
ground, it was more efficient to perform some pre-classification on-
board before transmitting the features. The main benefit from this
pre-classification was to enable different quantizers to be designed
specific to each leaf of the pre-classifier’s decision tree, and thus bet-
ter matched to the characteristics of the data.

Several criteria should be kept in mind to design the compression
and classification system. Efficiency of a compression scheme is
measured not only by its rate-classification performance, but also by
its conservation of onboard processing power, i.e., its coding com-
plexity. In our new work we show how to optimally split the clas-
sification tree between onboard and ground processing, based on a
tradeoff of complexity, rate, and distortion constraints.

A decision tree classifier is applied to classify the compressed
data. We assume that the pre-classifier is a pruned subtree of the
original decision tree. The Generalized Breiman, Freidman, Olshen,
and Stone (G-BFOS) algorithm is employed to jointly search for the
optimal pre-classifier and quantization parameters for each of the
classes. The optimization is carried out based on not only the rate
budget, but on the coding complexity constraint as well. Previously
we illustrated this framework by showing a texture classification ex-
ample. Although we showed an example where a simple uniform
scalar quantization is employed and a K -means tree is used as the
classifier, the idea is easily generalized to any classified quantization
system where a decision tree is involved.

The goal is to find the optimal subtree S∗ � T and the set of
stepsizes {�∗

i, j , j = 1, ..., N } for each class i , such that the overall

distortion D∗ is minimized subject to the rate budget Rb and com-
plexity constraint Cb.

D∗ = min
S∗,{�∗

i, j }

˜|S|∑
i=1

Pi × Di (�i,1, �i,2, ..., �i,N ) (1)

such that R(S, {�i, j }) ≤ Rb and C(S) ≤ Cb

3Work published in part in [13].



Let us introduce some notation. D(), C() and R() are tree func-
tionals defined as:

D(S, {�i, j }) =
∑

t∈S̃

P(t) × d(t) (2)

R(S, {�i, j }) =
∑

t∈S̃

P(t) × r(t)

C(S, {�i, j }) =
∑

t∈S̃

P(t) × l(t) + w × |S̃|

where S̃ is the set of leaf nodes of S and its size equals the number of
encoders that need to be stored; P(t) is the probability that an input
vector traverses node t ; l(t) is the length of the path from the root
to node t , and reflects the cost of traversing the classification tree S
from the root to node t ; w is a positive weighting factor; and r(t)
and d(t) are the operating entropy rate and distortion, respectively,
of the quantized output for the sample space at node t , with the set of
quantization stepsizes {�i, j } applied to quantize the data at node t :

r(ti , {�i, j }) =
∑
X∈ti

N∑
k=1

H(x̂k) (3)

d(ti , {�i, j }) =
∑
X∈ti

N∑
k=1

d(xk , x̂k)

Instead of solving the constrained problem (2), we use Lagrange
multipliers and solve the dual problem:

min
S∗ [ min

{�∗
i, j }

{D(S, {�i, j }) + λ × R(S, {�i, j }) + µ × C(S)}] (4)

Now we need to find the optimal multipliers λ and µ such that the
rate and complexity constraints are satisfied with equality.

The BFOS algorithm proposed by Friedman et al. [14] is a La-
grangian flavored method. It minimizes the functional J (S) =
δ(S) + λ × l(S) over all pruned subtrees S � T , with δ(S) and
l(S) being the average distortion and rate of a tree structured vector
quantizer defined on T and pruned to S. Chou et al. [15] extended
the BFOS algorithm by generalizing the two components of the cost
functional to any tree functionals U1(S) and U2(S). It was proved
that the generalized BFOS (G-BFOS) algorithm is capable of track-
ing out the extreme points which lie on the convex hull of the oper-
ating (U1, U2) pairs over all possible pruned subtrees S � T . We
define the two tree functionals as follows:

U1(S, {�i, j }) = D(S, {�i, j }) + λ × R(S, {�i, j }) (5)

U2(S, {�i, j }) = C(S, {�i, j })
As the sample space is hierarchically partitioned by the tree T ,

within each node t data tends to be clustered. This property can be
exploited to enable efficient quantization and entropy coding. Due
to this coding gain, for a fixed multiplier λ, the tree functional U1
would be monotonically decreasing as the tree grows. On the other
hand, the complexity of the system is monotonically increasing since
both the depth of the tree and the number of encoders become larger.
This ensures that an optimal point will be found by pruning the tree.
We proposed a nested optimization algorithm to jointly search for the
optimal subtree S∗ and the set of quantization stepsizes {�i, j } for a
given rate budget and complexity constraint.

The basic idea is: Initialize the multiplier λ, then for this fixed
multiplier, choose the set of stepsizes which minimize the functional

u1(t) ∀t ∈ T . Then the G-BFOS algorithm is used to prune the
tree until the complexity constraint Cb is satisfied. Then given the
resulting operating rate R, we adjust the multiplier λ using the bi-
section method [16] and repeat the process until convergence. We
perform the optimization on a binary tree T . T is built in a top-
down manner using the K -means algorithm until only one class is
left at each leaf node. The training set L = {X, Y } is a labeled vector
sequence obtained by computing the wavelet feature of the Brodatz
texture album [12]. X is the feature vector and Y is the associ-
ated texture label. The stepsizes {�i, j } are chosen from the prede-
fined discrete set {32, 16, 8, 4, 2}. We assume the traditional mean
squared error distortion, but it can be extended to other distortion
measures. Figure 5 shows the obtained Rate-Distortion-Complexity
surface. We can see the tradeoff between rate, distortion, and com-
plexity of the system, and we can verify the convexity of the surface,
as predicted by Goyal and Vetterli [17]. In Figure 6, we show the
rate-distortion performance for this coding system with and without
pre-classification. Substantial coding gain is obtained by employ-
ing a classified quantizer instead of a single quantizer, or by using a
higher-complexity classification tree.
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Figure 5: The Rate-Distortion-Complexity surface obtained
by the proposed optimization framework.

We also performed a texture classification with the compressed
data and the result is shown in Figure 7. A lower classification error
rate was achieved by using a classified encoder instead of a single
encoder.

B. ANALYTICAL MODEL-BASED BIT ALLOCATION FOR

OPTIMIZATION OF REGION OF INTEREST CODING 4

In our previous work [1, 18] we showed how one could apply the
Mallat model [20] to solve the problem of optimal bit allocation in a
region-of-interest setting [18]. We have now modified this model to
better take into account the special characteristics of the problem, in
particular ensuring that the model fits the data well at both high and
low rates.

4Work published in part in [18, 19].
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Our objective is to allocate bits to different regions in an image
coded with a progressive wavelet coder such as ICER [2], SPIHT
(Set Partitioning in Hierarchical Trees) [21] or JPEG 2000 [11], in
order to achieve region-of-interest (ROI) coding objectives. Here we
introduce a novel Rate-Distortion (R-D) model which is an extension
of Mallat’s model and especially designed to capture R-D behavior
when different parts of an image are refined at different speeds. Our
model takes into account that the rates used are not necessarily the
same throughout the image. Because of the different rates, certain
modeling approximations (e.g., those for coarse quantization) can
not be used uniformly throughout the image.

First, we briefly discuss the R-D model for SPIHT originally pro-
posed by Mallat and Falzon [20]. Given a total bit rate budget for
an image Rb, the average quantization error D(Mb) is the summa-
tion of the quantization error due to quantizing the significant coef-
ficients Esig and that due to setting to zero the insignificant coef-
ficients Einsig , divided by the total number of wavelet-transformed
coefficients, N :

D(Mb) = Esig + Einsig

N

=
Mb

�2

12 + ∑N
i=Mb+1 |x(i)|2
N

, (6)

where Mb is the number of significant coefficients with amplitude
larger than �, the size of final quantization bin, i.e., the final thresh-
old. Also, Mb is directly related to the average bit rate Rb via
Mb = N Rb

6.6 . All N wavelet coefficients are sorted in monotonically
descending order of magnitude, to obtain a list {x(i), i = 1, . . . , N }.
Einsig is the energy of the N − Mb smallest amplitude coefficients
since it is the error when all insignificant coefficients are quantized to
zero, i.e., Einsig = ∑N

i=Mb+1 |x(i)|2. According to the sorted se-
quence, it is clear that � = |x(Mb)|. The average quantization error
per significant coefficient is calculated based on the hypothesis that
the probability density function (pdf) of the significant coefficients
is flat within each quantization interval and thus the well-known ap-

proximation of a uniform distribution can be used, Esig

Mb
= �2

12 . As
shown in Figure 8, this explains why Mallat’s model works well at
low bit rates. This is because the histogram outside the central bin,
�o

L , is sufficiently flat, with coarse quantization, leading to an ac-
curate approximation for Esig . However, at high bit rates, the his-
togram outside �o

H is not very flat, so that approximating it by a
uniform distribution within the interval may not be accurate. Even
though at high rates the quantization bins are small, they are not suf-
ficiently small to make the uniform approximation sufficiently accu-
rate.

In our proposed modified model, we start by assuming that the
pdf of the wavelet coefficients can be modeled as a Laplacian dis-
tribution. We then obtain a new representation of the error for the
significant coefficients which is given by:

Esig =
Mbe−K

(
1 − e− K S

2

) (
K 2 − 4K + 8 − e−K (K 2 + 4K + 8)

)

4λ2
(
1 − e−K

) ,

(7)
where K = λ� and S is the number of quantization intervals be-
sides the central bin. Note that Einsig is unchanged since there is
no approximation in representing the error due to setting to zero the
insignificant coefficients. More detailed descriptions can be found in
[19].
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Figure 8: Normalized histogram of the wavelet coefficients of
the gray-level Lena image. �L = 16 and �H = 4 are the
sizes of the final quantization bin and, �o

L = 32 and �o
H = 8

are the sizes of the zero bin, at low and high bit rates (0.3 and
1.1 bps), respectively.

In our experiments, we applied the distortion ratio criterion to
three standard gray-level images of size 512×512 pixels (Lena, Boat
and Lake). We validated our results by using different types of ROIs
in different positions in each image: (i) a rectangular ROI of size
200 × 200 in the middle of the image, (ii) a cross-shaped ROI in the
middle of the image, and (iii) an L-shaped ROI in the upper-left cor-
ner of the image. We determine the priority scaling factor (ps f ) ob-
tained from our proposed model, denoted ps f pro, the one obtained
using Mallat’s model, denoted ps fmal , and the one obtained through
an exhaustive search (i.e., selecting the best value among ps f in the
set {1, 1.1, 1.2, . . . , 400}), which we denote ps femp . Each of the
ps f values is chosen so as to target a desired distortion ratio between
the ROI and the rest of the image, while minimizing the overall dis-
tortion, for a given total rate budget. We computed the variation
between ps f pro and ps femp and the variation between ps fmal and
ps femp . For each shape, we averaged the variations of the means
(mean) and standard deviations (std) over 3 images when the desired
ratio varied from 1 to 10. We computed 3 statistical sets of data
which are: (i) ps f values, (ii) ROI distortions (distroi ), and (iii)
background distortions (distnroi ). These are shown in Tables 1(a)
and 1(b), based on our proposed model and on Mallat’s model, re-
spectively. Our results show clearly that our proposed model pro-
vides more accurate estimates of ps f values and the distortions than
those obtained by using Mallat’s model.

C. OPTIMAL RATE CONTROL FOR IMAGE TRANSMISSION OVER

CONSTANT BIT RATE CHANNELS BASED ON A HYBRID

MMAX/MMSE CRITERION 5

Our work on rate control of prioritized data under buffering con-
straints first focused on the use of on-line algorithms for the mini-
mum maximum (MMAX) distortion criterion [1, 22]. For this cri-
terion we showed that an on-line method with buffer sorting is as
good as the best off-line approach. We have now extended our work
to introduce a new distortion measure criterion, seeking to guarantee
good worst-case quality, while also aiming at good average qual-
ity. We focus on finding optimal off-line rate control for constant bit
rate (CBR) transmission, where the size of the encoder buffer and
the channel rate are used as constraints. After the constraints have

5Work published in part in [22].

Table 1: Experimental results obtained by using (a) the pro-
posed model and (b) Mallat’s model.

ps f distroi distnroi

Shape mean std mean std mean std

rectangular 2.23% 1.70% 1.94% 1.64% 1.01% 0.91%
cross 2.83% 1.93% 1.95% 1.90% 1.70% 1.30%
L 2.30% 1.74% 1.74% 1.26% 1.30% 1.12%

(a)

ps f distroi distnroi

Shape mean std mean std mean std

rectangular 6.75% 3.12% 2.99% 2.81% 3.45% 2.45%
cross 5.87% 3.01% 3.79% 2.47% 3.39% 2.16%
L 6.14% 3.50% 4.22% 3.75% 2.90% 1.81%

(b)

been determined, a target quality measure should be chosen. Most
previous work for image and video coding has been based on min-
imization of average distortion (MMSE). A main drawback of the
MMSE criterion is that the quality difference between images can be
large and some images may be coded at relatively low quality even
though the average quality is high. The MMAX criterion has been
proposed to prevent this heavy fluctuation of source quality. Using
this criterion, coding units having a significantly lower than average
quality can be avoided. But when multiple constraints are present, as
in our case, the MMAX criterion by itself may be inefficient. This
is because the MMAX optimization is terminated as soon as it can-
not decrease the maximum overall distortion. This means that more
data could be sent in these periods and the overall quality can be in-
creased. As an approach to increase overall quality after finding a
MMAX solution, we propose to use a MMSE criterion for the re-
maining bit-budget. We denote this criterion MMAX+, because it
augments the MMAX criterion with additional targets.

Table 2 shows the experimental results for each criterion. These
results were obtained using a video sequence to provide the sequence
of images; we expect comparable results to be achievable when se-
quences of independent images are used instead. The results show
that the proposed MMAX+ criterion gives higher average PSNR than
the MMAX criterion while it gives same minimum PSNR.

Table 2: Performance (PSNR) comparison of MMAX,
MMAX+ and MMSE optimal solutions. Used channel rate
is 10 Mbps, the image interval is 0.5 second and the size of an
encoder buffer is 20 Mbits. Initial and final buffer states are at
mid-buffer.

Method Avg. Std. Dev. Min. Max.

MMAX 38.21 0.137 38.15 39.44
MMAX+ 38.60 0.847 38.15 42.57
MMSE 38.72 1.424 35.26 42.75
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