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Abstract—This paper presents work being done at 
NASA/GSFC by the Operating Missions as Nodes on the 
Internet (OMNI) project to demonstrate the application of the 
Multicast Dissemination Protocol (MDP) to space missions to 
reliably transfer files.  This work builds on previous work by 
the OMNI project to apply Internet communication 
technologies to space communication.  

The goal of this effort is to provide an inexpensive, reliable, 
standard, and interoperable mechanism for transferring files in 
the space communication environment.  Limited bandwidth, 
noise, delay, intermittent connectivity, link asymmetry, and 
one-way links are all possible issues for space missions.  
Although these are link-layer issues, they can have a profound 
effect on the performance of transport and application level 
protocols.  MDP, a UDP-based reliable file transfer protocol, 
was designed for multicast environments which have to 
address these same issues, and it has done so successfully.  
Developed by the Naval Research Lab in the mid 1990’s, MDP 
is now in daily use by both the US Post Office and the DoD. 

This paper describes the use of MDP to provide automated 
end-to-end data flow for space missions.  It examines the 
results of a parametric study of MDP in a simulated space link 
environment and discusses the results in terms of their 
implications for space missions.  Lessons learned are 
addressed, which suggest minor enhancements to the MDP 
user interface to add specific features for space mission 
requirements, such as dynamic control of data rate, and a 
checkpoint/resume capability.  These are features that are 
provided for in the protocol, but are not implemented in the 
sample MDP application that was provided. A brief look is also 
taken at the status of standardization.  A version of MDP 
known as NORM (Nack Oriented Reliable Multicast) is in the 
process of becoming an IETF standard. 
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1. INTRODUCTION 
Our reference architecture for MDP-based reliable space data 
transfer utilizes the Internet suite of protocols. These are 
based on the OSI seven-layer model of networking, but with 
some differences. In the OSI model, there are seven distinct 
layers. Starting from the lowest, they are: 

1. Physical - Raw bits, coding (wire, fiber, RF) 
2. Link - Frames (HDLC, FDDI, ATM, ethernet) 
3. Network - end-to-end addressed datagrams (IP) 
4. Transport - multiplexed packets (TCP, UDP) 
5. Session - login, authentication 
6. Presentation - formating, translation 
7. Application - user data 

In the Internet implementation, layers 5 - 7 tend to be 
compressed into a single application layer.  For example, the 
Internet file transfer application "FTP" incorporates elements 
of the session layer (user login), presentation layer 
(translation of ASCII files), and application layer (transfer 
user files). 
MDP is an application layer protocol.  It operates over a User 
Datagram Protocol (UDP) transport layer.  The simple nature 
of UDP packets renders them largely insensitive to link layer 
issues, such as delay and asymmetry, but requires reliability to 
be implemented at the application layer. 

2. OVERVIEW OF BULK DATA TRANSFERS IN SPACE 
In order to make effective use of MDP for bulk data transfers 
from space missions, mission designers must change the way 
they think about data transfers.  

Old Paradigm: Recorder Playback 

Current missions have a legacy architecture that derives from 
a time when bulk data storage was implemented with a 
sequential tape or wire recorder.  Data would be recorded 
while the spacecraft was out of contact, often preformatting 
the downlink frames directly onto the recorder.  Later, the 
tape would be rewound and the data played back during a 
ground contact. Reliability was achieved by using sufficient 
amounts of forward-error-correction (FEC) codes, such as 
Reed-Solomon. If the data quality was still unacceptable, and 
there was sufficient contact time, portions of the data would 
be played back a second time.  Ground software would then 
combine the two playbacks and attempt to fill in any dropouts.  



With the advent of space-qualified solid-state memory, newer 
missions replaced mechanical tapes with solid state recorders 
(SSRs). But these SSRs continued to emulate the 
functionality of sequential tape recorders, burdening the flight 
operations team (FOT) with the increasingly complex tasks of 
managing the recorder’s storage and assuring downlink data 
quality. 

New Paradigm: File Transfer 

New missions are beginning to move to a different 
architecture for data storage and playback.  This new 
paradigm features the use of an onboard operating system 
(OS) that supports files.  Bulk, solid-state memory is 
organized to support implementing a file system on top of it.  
This incurs two immediate benefits: automatic storage 
management and random access playback. With files, the low-
level storage management is taken care of by the OS and the 
file system, instead of by the FOT.  These commercial-off-
the-shelf (COTS) packages have thousands of hours of testing 
and optimization, unlike manual procedures or mission-
specific application code.  The random-access nature of files 
makes them well suited to support prioritized or non-
sequential playback and deletion. This is an increasingly 
important requirement, particularly for high-data-volume 
earth-science missions such as Landsat. By organizing the 
data into files, each file can be downlinked using a generic file 
transfer application, such as MDP, that assures data quality by 
automatically performing error correction and/or 
retransmission as needed. 

3. SPACE RELATED ISSUES 
There are a number of apparent issues for space-based usage 
of Internet protocols. Although these are link-layer issues[1], 
they can have a profound effect on the performance of 
transport and application level protocols[2]. Any practical 
design for using Internet protocols for reliably transporting 
files across a space-to-ground link must take these link-layer 
issues into account.  

Bandwidth 

Space missions always operate in a constrained bandwidth 
environment. Often, the constraints are determined by factors 
that are independent of the science data requirements, such as 
electrical power budget and launch vehicle payload capacity. 
Regardless of the absolute numbers, a practical protocol must 
make reasonably efficient use of its bandwidth, and must 
either share the link fairly with other protocols, or be able to 
be throttled to a fixed portion of the available bandwidth. 

Noise 

Frequently, it is pointed out that most packet losses on the 
Internet are due to congestion, whereas most losses on a 
space-to-ground link are due to noise. TCP, the most well 
known of the Internet protocols, has no mechanism for 
distinguishing packet loss due to noise from packet loss due 
to congestion, so it always assumes congestion and responds 
to noise by slowing down.  This feature of TCP is often used 
to imply that all Internet protocols operate sluggishly or fail 
outright in the presence of noise. This is not true for UDP 
based protocols. UDP does not perform flow control and 
never attempts to throttle the data at the transport layer.  So an 

IP based file transfer solution should either be based on UDP, 
or run over a link with sufficient FEC to reduce the bit error 
rate (BER) to a level that will allow TCP to operate 
efficiently. 

Delay 

Often it is stated that space missions must be carried out with 
"Round trip delays much greater than ground systems"[3], and 
that "...long propagation times cause terrestrial protocols to 
operate sluggishly or fail outright"[3].  For low earth orbit 
(LEO) missions, which represent the large majority of space 
missions, this is simply not true.   A LEO spacecraft is only 
200-400 miles away when it passes overhead.  Since radio 
waves travels at the speed of light, this translates into only a 4 
mS round trip time!  Even at the horizon, which for a 
spacecraft in a 400 mile high orbit is approximately 3000 
miles away, this is about a 32 mS round trip time.  Compare 
this with typical Internet ping times from Baltimore to Los 
Angeles of 100 mS and the LEO spacecraft should actually 
run better than coast-to-coast terrestrial links. Even out to 
geosynchronous orbit, the round trip delay time is only 240 
mS. Experiments have been performed at the NASA Glenn 
Research Center[4] using the ACTS satellite, which have 
operated TCP/IP at over 400 megabits/second at this distance. 
Laboratory experiments have suggested that lunar distance, 
with its 1666 mS round trip time, would require some care in 
setting up the connection, and represents the practical limit 
for TCP based applications.  Beyond this distance, deep space 
missions, such as Mars, should look to using a delay-
insensitive UDP based protocol. 

Intermittent Connectivity 

Spacecraft that are not in a geosynchronous orbit cannot 
maintain continuous direct contact with the ground. Contacts 
are limited to a brief time when the spacecraft passes within 
line-of-sight of the ground station. For a low earth orbit, this 
"pass" is typically no more than 8 to 15 minutes long, a few 
times a day. If more contacts are needed, more ground stations 
must be used, complicating the routing of data to and from 
the spacecraft[1].   

Link Asymmetry / Unidirectional Links 

Most spacecraft have a much greater downlink bandwidth 
than uplink bandwidth. This asymmetry is often incorrectly 
attributed to the fact that spacecraft are limited by their power 
and weight budgets, and cannot generally support large 
steerable high-gain antennas. While this fact is true, it is not 
what limits the uplink data rate. Up to a point, any 
shortcomings of the spacecraft antenna or receiver can be 
compensated for by more power and bigger antennas on the 
ground. The real limitation is driven in part by physics, but 
mostly by convention and legacy equipment.  In any event, a 
practical IP based file transfer solution should be able to 
operate with large link asymmetry, and should be able to take 
advantage of any unidirectional “return only” downlinks. 

4. GENERAL DESCRIPTION OF MDP 
MDP, a UDP-based reliable file transfer protocol, was 
designed for multicast environments which have to address 
these same issues, and it has done so successfully.  Developed 
by the Naval Research Lab in the mid 1990’s, MDP is now in 



daily use by both the US Post Office and the DoD.  The code 
is freely available from NRL’s MDP website2, and runs on 
multiple platforms. 
MDP is implemented in two major pieces: A protocol library 
and a file transfer application.  The library embodies all of the 
MDP protocol logic, and is accessed through a well-defined 
application program interface (API)[5]. The application 
program provides the interfaces to the user, the file system, 
and the protocol library.  This modular approach allows the 
possibility of tailoring the application for specific 
requirements while maintaining interoperability with all other 
MDP implementations. 
Although developed specifically for reliable file transfer in a 
multicast environment, MDP has had to address and solve the 
issues of channel utilization, delay tolerance, noise tolerance, 
asymmetry, unidirectional links, and link intermittency. 

Bandwidth Utilization 

The MDP protocol is implemented using UDP packets. UDP 
is a connectionless transport protocol designed to operate 
over IP.  Its primary functions are error detection and 
multiplexing. UDP does not guarantee the delivery or order of 
packets, but guarantees that if a packet is ever delivered with 
errors, such errors will be detected.  Because the UDP format 
is simple, it has a low overhead. This results in a very efficient 
protocol.  MDP’s bandwidth utilization, calculated as file-
size/total-bits-transferred, can be as high as 90%. Because 
this number is calculated by using the total bits transferred 
over the link, it includes all overhead from all sources, not 
just MDP’s overhead. In addition, the MDP file transfer 
application provides the ability to throttle transfers to a 
specified average bitrate. 

Delay Tolerance 

TCP is a delay sensitive protocol, due to its need to establish 
a “connection” with a three-way handshake, and to 
acknowledge every two packets sent. UDP, on the other hand, 
is a “send and forget” protocol. This makes it completely 
delay insensitive. By using UDP, and maintaining it’s own 
internal timers, MDP has been designed to operate with large 
round-trip-time delays, on the order of hours or days. 

Noise Tolerance 

On an IP based space link, noise manifests itself as dropped 
packets, usually due to cyclic-redundancy-check (CRC) 
failures. MDP has two mechanisms for handling this: 
retransmissions and application-level reed-solomon FEC. 
When the MDP client on the receiving side of a transfer 
detects that it has missed one or more packets, it sends an 
aggregated Negative Acknowledgement (NACK) back to the 
sender, who will automatically retransmit the lost packets. In 
addition, in a highly errored environment, MDP has the option 
of proactively adding additional reed-solomon FEC symbols 
to the transfer at the application layer.  These can be used to 
reconstruct damaged or lost packets without requesting 
retransmission.  The amount of FEC added is selectable, and 
should be based on a study of the trade-offs between the 
overhead of retransmissions vs the overhead of additional 
FEC, at a particular error rate. 
                                                             
2 http://pf.itd.nrl.navy.mil/projects/mdp/ 

High Link Asymmetry 

Because MDP is NACK based rather than ACK based, it is 
extremely conservative of the uplink channel, maintaining at 
least a 1000:1 downlink/uplink ratio, even in the presence of 
a 10E-5 BER. Ratios of 10,000:1 and beyond are common. 

Unidirectional Link Capability 

By design, the MDP protocol has loose coupling between the 
downlink of data and the uplink of NACKs. This means that 
the sender does not wait for NACKs while downlinking a file. 
And, thanks to MDP’s use of a connectionless UDP transport, 
the NACKs can even be segregated into a different contact!  
This means that an MDP server onboard a spacecraft can 
make use of the much more readily available “downlink only” 
contacts to get the bulk of the data downlinked, and make use 
of a later “bidirectional” contact to uplink any pending 
NACKs and downlink the retransmissions.  MDP also has an 
“Emissions Control” (EMCOM) mode where the client never 
requests retransmission, and simply makes a best-effort 
attempt to receive the file. 

Intermittent Links 

Again, because of the loose coupling and delay insensitivity, 
MDP can begin the transfer of a file during one contact, and 
complete it on subsequent contacts. 

5. END-TO-END DATA FLOW ARCHITECTURES 
The MDP application is a single program that can be operated 
as either a client or a server.  The MDP server is designed to 
utilize a “hot directory” concept, where new files arriving in 
the “hot directory” are automatically queued for transfer. The 
MDP client passively receives files that are “pushed” to it by 
the server, and has the capability to hand-off the received file 
to another arbitrary application upon completion. This section 
will briefly examine two possible MDP end-to-end data flow 
architectures, but a detailed discussion is beyond the scope of 
this paper.  A more complete discussion of end-to-end data 
flow scenarios can be found in the paper “Internet Data 
Delivery for Future Space Missions”[6]. 

Direct to User 

In this configuration, a single MDP server runs on the 
spacecraft, and the MDP client runs in the end user facility, 
such as the Mission Operations Center (MOC) or the Science 
Operations Center (SOC).  See Figure 1.  In addition, multiple 
simultaneous clients are possible, utilizing MDP’s multicast 
capability. Using multicast to ship the data to multiple clients 
is desirable because any needed packet replication is taken 
care of by the routers on the ground network, never by MDP. 
In a multicast configuration, the clients can be a mix of 
EMCON and non-EMCOM, where only the “primary” non-
EMCON clients are expected to send back a “file received” 
acknowledgement. 
 

Store and Forward 



In this configuration, shown in figure 2, a single MDP server 
runs on the spacecraft, sending to a single MDP client at the 
groundstation. Files are stored at the groundstation for 
subsequent transfer to end users, possibly at a different time 
and at a different data rate from the downlink.  Again, a mix 
of “primary” and “best effort” clients are possible. 
 

6. MDP PARAMETRIC STUDY 
In 2001, we performed a parametric study of MDP in a 
simulated space link environment.  The purpose was to 
characterize MDP’s performance under a wide range of 
conditions, including ones that are typical for many space 
missions.   

Independent Variables 

During the test, four independent variables were varied, one at 
a time, for two different test series3.  For series 1, these were: 

1. Data bitrates: 128K, 256K, 512K, 1M, 2M 
2. File sizes: 1MB, 2MB, 4MB 
3. Bit Error Rates: 0, 1E-8, 1E-7, 1E-6, 1E-5 
4. Round trip delay: 0mS, 10ms, 100mS, 500mS 

                                                             
3 For both test series, the uplink was constrained to 2 Kbits/sec. 

For test series 2, these were: 
1. Data bitrates: 1M, 2M 
2. File sizes: 5MB, 50MB 
3. Bit Error Rates: 0, 1E-8, 1E-7, 1E-6, 1E-5 
4. Round trip delay: 0mS, 10ms, 100mS, 500mS 

Dependent Variables 

After the tests, two dependent variables were plotted.  These 
were: 

1. Bandwidth Utilization 
2. Link Asummetry 

Test Setup 

An automated test environment, shown in fig 3, was 
developed to perform the file transfers and collect packet 
level statistics at the server, router and client. A 
programmable Adtech channel simulator was inserted in the 
serial communications link to insert delay and noise. The test 
control software was resident on the same machine as the 
MDP client, but used separate communications paths for 
control so as not to introduce error into the measurements. 
 

Test Results 

A summary of the test results appears in figures 4 and 5. A set 
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of spreadsheets containing the complete results of the test is 
available for download4.  
One of the most notable findings is that bandwidth utilization 
and link asymmetry are essentially independent of round trip 
time (delay).  This behavior for bandwidth utilization is in 
marked contrast to TCP-based protocols, such as FTP, which 
run into a performance “wall” once the delay-bandwidth 
product exceeds the size of their window buffer. 
The large values for link asymmetry mean that even a mission 
with 10E-5 BER and a 2 Kbit/sec uplink can support 
downlinks of 1 Mbit//sec. And at a more typical5 BER of 
10E-7 (after FEC), downlinks of 10 Mbits/sec are possible. 
Although this is important for near-term missions which must 
accommodate a legacy 2 Kbit/sec uplink from existing 
groundstations, it is less of a concern for TDRSS based 
missions, which can support a symmetrical uplink/downlink if 
desired. 

 
 

                                                             
4 http://ipinspace.gsfc.nasa.gov/documents/ 
5 Based on measurements of actual Wind/Polar mission data. 

7. MDP FLIGHT TESTS 
MDP will be flight tested in the summer of 2002 on the 
Communication and Navigation Demonstration on Shuttle 
(CANDOS) mission.  This HitchHiker mission is part of a 16 
day shuttle flight, and has its own independent transceiver 
which will be used to directly contact either gorundstations or 
TDRSS, independent of the shuttle comm system.  CANDOS 
will demonstrate basic IP connectivity on the space link, 
mobile-IP routing, and reliable file transfer using MDP.  File 
transfers will be conducted under realistic conditions, 
including intermittent and “downlink only” contacts. The 
CANDOS mission is discussed in more detail in the paper 
“Space Communications Demonstration Using Internet 
Technology”[7]. 

8. ENHANCEMENTS TO THE MDP APPLICATION 
In the course of our investigations, we identified several 
potential enhancements to the MDP application that would 
improve its ease of use in a spacecraft environment. These 
enhancements are primarily associated with improving the 
ease of automatically handling intermittent contacts. 

Runtime Control Interface 

Currently, the MDP application can only set its runtime 
parameters via commandline switches set at its initial 
execution. This requires stopping and restarting the 
application each time a change is needed to one of these 
parameters.  Almost all of them are settable through a call to 
the MDP protocol library using the documented API. It would 
be a straightforward addition to the MDP application to have 
it open a “commanding” socket, and accept runtime 
commands to alter these parameters on the fly. 

Runtime Datarate Throttle Control 

MDP has the ability to throttle it’s maximum bitrate.  This is 
a necessary feature for applications built on top of UDP, as 
UDP does not incorporate any flow control.  Giving the MDP 
application a command to dynamically change its bitrate 
would allow it to adapt to changing spacecraft modes without 
having to stop and restart the server. 

Checkpoint / Restore 

By adding a pair of commands to save all of MDP’s internal 
state into a file, and restore it later, we would gain the ability 
to resume an incomplete transfer that was interrupted by a 
reboot of the processor, such as when the spacecraft goes into 
a “safehold” mode. 

Pause / Resume 

This pair of functions would be used to manage the MDP 
server and client by pausing it when the spacecraft was out of 
contact with the ground.  In its “paused” state, all MDP’s 
timers would be frozen, but its other state information would 
be preserved. This would prevent the server and client from 
uselessly sending either data packets or NACKS while out of 
contact.  This functionality can currently be provided by using 
the host operating system to suspend the MDP application, 
but this approach requires external scripts to make it happen. 
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React to Transceiver State 

This capability may just be a refinement of the Pause/Resume 
commands.  It would allow notifying MDP of the status of 
the transmitter and the receiver separately.  MDP’s response 
to XmitOff and RecvOff commands would be different, 
depending on whether it was running as a server or as a client. 
 For example, a client with its transmitter off but its receiver 
on would continue accepting data packets sent by the server, 
but would accumulate and defer any NACKS needed until 
such time as the transmitter was on. 

9. STANDARDIZATION ACTIVITIES 

RMT Working Group 

The Internet Engineering Task Force (IETF) has established 
the Reliable Multicast Transport (RMT) working group. The 
purpose of the RMT is to standardize reliable multicast 
transport. Its efforts focus on one-to-many transport of large 
amounts of data. This working group expects to initially 
standardize three protocol instantiations, one each from the 
following three families:  

1. A NACK-based protocol 
2. A Tree-based ACK protocol 
3. An “Asynchronous Layered Coding” protocol 

that uses Forward Error Correction  

MDP falls into the first class.  The authors of MDP are active 
in the RMT and have submitted MDP as the basis for their 
standard NACK Oriented Reliable Multicast (NORM) 
protocol. 

NORM 

The NACK Oriented Reliable Multicast protocol is currently 
defined in a set of Internet-Drafts dated November 2001 and 
March 2002. It is essentially based on MDP, with some 
additional generalization to support arbitrary types of FEC.  
MDP is specific in its use of Reed-Solomon for application-
level FEC, whereas NORM allows the use of standardized 
FEC “building blocks”.  These functional “building blocks” 
are at the core of the RMT working group’s efforts, because 
many of the functions (such as FEC) have applicability across 
all three classes of Reliable Multicast Transports.  Work in 
the NORM area of the RMT is active and ongoing. 

10. FUTURE WORK 

More MDP Flight Experience 

MDP is currently being considered for use on several 
upcoming space missions, including the Global Precipitation 
Mission (GPM), and the Solar Dynamics Observatory (SDO). 
 The OMNI project is actively working with these, and other 
missions, to provide systems engineering support for the 
preliminary design of their end-to-end IP infrastructure. 

Implement and Fly Enhancements 

Work is currently underway to implement some of the 
enhancements to the MDP application that were proposed in 
section 8. These enhancements will be incorporated into a 
flight-ready MDP package before the year’s end. 

Hardware Assisted High-Rate Transfers 

Later this year, preliminary work will begin on designing an 
approach for providing hardware-assisted high-rate data 
transfers.  The plan is to identify that portion of the MDP 
protocol that can be incorporated into hardware without 
compromising the layered approach of an IP architecture. 

Status Updates 

Information on the results of future MDP activities will be 
posted on the OMNI project web site at 
http://ipinspace.gsfc.nasa.gov/. 

11. CONCLUSIONS 
MDP is well suited to provide an inexpensive, reliable, 
standard, and interoperable mechanism for transferring files in 
the space communication environment. It successfully 
addresses the issues of limited bandwidth, noise, delay, 
intermittent connectivity, link asymmetry, and one-way links.  
MDP’s high link asymmetry tolerance makes it particularly 
well suited to Earth-Science missions with high downlink 
requirements and limited uplink capabilities. 
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