
MDP: Reliable File Transfer for Space Missions1
James Rash

NASA/Goddard Space Flight Center
Greenbelt, MD 20771

Ed Criscuolo, Keith Hogie, Ron Parise
Computer Sciences Corp

7700 Hubble Dr.
Lanham-Seabrook, MD 20706

1 U.S. Government work not protected by U.S. copyright

Abstract—This paper presents work being done at
NASA/GSFC by the Operating Missions as Nodes on the
Internet (OMNI) project to demonstrate the application of the
Multicast Dissemination Protocol (MDP) to space missions to
reliably transfer files. This work builds on previous work by
the OMNI project to apply Internet communication
technologies to space communication.

The goal of this effort is to provide an inexpensive, reliable,
standard, and interoperable mechanism for transferring files in
the space communication environment. Limited bandwidth,
noise, delay, intermittent connectivity, link asymmetry, and
one-way links are all possible issues for space missions.
Although these are link-layer issues, they can have a profound
effect on the performance of transport and application level
protocols. MDP, a UDP-based reliable file transfer protocol,
was designed for multicast environments which have to
address these same issues, and it has done so successfully.
Developed by the Naval Research Lab in the mid 1990’s, MDP
is now in daily use by both the US Post Office and the DoD.

This paper describes the use of MDP to provide automated
end-to-end data flow for space missions. It examines the
results of a parametric study of MDP in a simulated space link
environment and discusses the results in terms of their
implications for space missions. Lessons learned are
addressed, which suggest minor enhancements to the MDP
user interface to add specific features for space mission
requirements, such as dynamic control of data rate, and a
checkpoint/resume capability. These are features that are
provided for in the protocol, but are not implemented in the
sample MDP application that was provided. A brief look is also
taken at the status of standardization. A version of MDP
known as NORM (Nack Oriented Reliable Multicast) is in the
process of becoming an IETF standard.

TABLE OF CONTENTS
1. INTRODUCTION
2. OVERVIEW OF BULK DATA TRANSFERS IN SPACE
3. SPACE RELATED ISSUES
4. GENERAL DESCRIPTION OF MDP
5. END-TO-END DATA FLOW ARCHITECTURES
6. MDP PARAMETRIC STUDY
7. MDP FLIGHT TESTS
8. ENHANCEMENTS TO APPLICATION
9. STANDARDIZATION ACTIVITIES
10. FUTURE WORK
11. CONCLUSIONS
12. ACKNOWLEDGEMENTS

1. INTRODUCTION
Our reference architecture for MDP-based reliable space data
transfer utilizes the Internet suite of protocols. These are
based on the OSI seven-layer model of networking, but with
some differences. In the OSI model, there are seven distinct
layers. Starting from the lowest, they are:

1. Physical - Raw bits, coding (wire, fiber, RF)
2. Link - Frames (HDLC, FDDI, ATM, ethernet)
3. Network - end-to-end addressed datagrams (IP)
4. Transport - multiplexed packets (TCP, UDP)
5. Session - login, authentication
6. Presentation - formating, translation
7. Application - user data

In the Internet implementation, layers 5 - 7 tend to be
compressed into a single application layer. For example, the
Internet file transfer application "FTP" incorporates elements
of the session layer (user login), presentation layer
(translation of ASCII files), and application layer (transfer
user files).
MDP is an application layer protocol. It operates over a User
Datagram Protocol (UDP) transport layer. The simple nature
of UDP packets renders them largely insensitive to link layer
issues, such as delay and asymmetry, but requires reliability to
be implemented at the application layer.

2. OVERVIEW OF BULK DATA TRANSFERS IN SPACE
In order to make effective use of MDP for bulk data transfers
from space missions, mission designers must change the way
they think about data transfers.

Old Paradigm: Recorder Playback

Current missions have a legacy architecture that derives from
a time when bulk data storage was implemented with a
sequential tape or wire recorder. Data would be recorded
while the spacecraft was out of contact, often preformatting
the downlink frames directly onto the recorder. Later, the
tape would be rewound and the data played back during a
ground contact. Reliability was achieved by using sufficient
amounts of forward-error-correction (FEC) codes, such as
Reed-Solomon. If the data quality was still unacceptable, and
there was sufficient contact time, portions of the data would
be played back a second time. Ground software would then
combine the two playbacks and attempt to fill in any dropouts.

With the advent of space-qualified solid-state memory, newer
missions replaced mechanical tapes with solid state recorders
(SSRs). But these SSRs continued to emulate the
functionality of sequential tape recorders, burdening the flight
operations team (FOT) with the increasingly complex tasks of
managing the recorder’s storage and assuring downlink data
quality.

New Paradigm: File Transfer

New missions are beginning to move to a different
architecture for data storage and playback. This new
paradigm features the use of an onboard operating system
(OS) that supports files. Bulk, solid-state memory is
organized to support implementing a file system on top of it.
This incurs two immediate benefits: automatic storage
management and random access playback. With files, the low-
level storage management is taken care of by the OS and the
file system, instead of by the FOT. These commercial-off-
the-shelf (COTS) packages have thousands of hours of testing
and optimization, unlike manual procedures or mission-
specific application code. The random-access nature of files
makes them well suited to support prioritized or non-
sequential playback and deletion. This is an increasingly
important requirement, particularly for high-data-volume
earth-science missions such as Landsat. By organizing the
data into files, each file can be downlinked using a generic file
transfer application, such as MDP, that assures data quality by
automatically performing error correction and/or
retransmission as needed.

3. SPACE RELATED ISSUES
There are a number of apparent issues for space-based usage
of Internet protocols. Although these are link-layer issues[1],
they can have a profound effect on the performance of
transport and application level protocols[2]. Any practical
design for using Internet protocols for reliably transporting
files across a space-to-ground link must take these link-layer
issues into account.

Bandwidth

Space missions always operate in a constrained bandwidth
environment. Often, the constraints are determined by factors
that are independent of the science data requirements, such as
electrical power budget and launch vehicle payload capacity.
Regardless of the absolute numbers, a practical protocol must
make reasonably efficient use of its bandwidth, and must
either share the link fairly with other protocols, or be able to
be throttled to a fixed portion of the available bandwidth.

Noise

Frequently, it is pointed out that most packet losses on the
Internet are due to congestion, whereas most losses on a
space-to-ground link are due to noise. TCP, the most well
known of the Internet protocols, has no mechanism for
distinguishing packet loss due to noise from packet loss due
to congestion, so it always assumes congestion and responds
to noise by slowing down. This feature of TCP is often used
to imply that all Internet protocols operate sluggishly or fail
outright in the presence of noise. This is not true for UDP
based protocols. UDP does not perform flow control and
never attempts to throttle the data at the transport layer. So an

IP based file transfer solution should either be based on UDP,
or run over a link with sufficient FEC to reduce the bit error
rate (BER) to a level that will allow TCP to operate
efficiently.

Delay

Often it is stated that space missions must be carried out with
"Round trip delays much greater than ground systems"[3], and
that "...long propagation times cause terrestrial protocols to
operate sluggishly or fail outright"[3]. For low earth orbit
(LEO) missions, which represent the large majority of space
missions, this is simply not true. A LEO spacecraft is only
200-400 miles away when it passes overhead. Since radio
waves travels at the speed of light, this translates into only a 4
mS round trip time! Even at the horizon, which for a
spacecraft in a 400 mile high orbit is approximately 3000
miles away, this is about a 32 mS round trip time. Compare
this with typical Internet ping times from Baltimore to Los
Angeles of 100 mS and the LEO spacecraft should actually
run better than coast-to-coast terrestrial links. Even out to
geosynchronous orbit, the round trip delay time is only 240
mS. Experiments have been performed at the NASA Glenn
Research Center[4] using the ACTS satellite, which have
operated TCP/IP at over 400 megabits/second at this distance.
Laboratory experiments have suggested that lunar distance,
with its 1666 mS round trip time, would require some care in
setting up the connection, and represents the practical limit
for TCP based applications. Beyond this distance, deep space
missions, such as Mars, should look to using a delay-
insensitive UDP based protocol.

Intermittent Connectivity

Spacecraft that are not in a geosynchronous orbit cannot
maintain continuous direct contact with the ground. Contacts
are limited to a brief time when the spacecraft passes within
line-of-sight of the ground station. For a low earth orbit, this
"pass" is typically no more than 8 to 15 minutes long, a few
times a day. If more contacts are needed, more ground stations
must be used, complicating the routing of data to and from
the spacecraft[1].

Link Asymmetry / Unidirectional Links

Most spacecraft have a much greater downlink bandwidth
than uplink bandwidth. This asymmetry is often incorrectly
attributed to the fact that spacecraft are limited by their power
and weight budgets, and cannot generally support large
steerable high-gain antennas. While this fact is true, it is not
what limits the uplink data rate. Up to a point, any
shortcomings of the spacecraft antenna or receiver can be
compensated for by more power and bigger antennas on the
ground. The real limitation is driven in part by physics, but
mostly by convention and legacy equipment. In any event, a
practical IP based file transfer solution should be able to
operate with large link asymmetry, and should be able to take
advantage of any unidirectional “return only” downlinks.

4. GENERAL DESCRIPTION OF MDP
MDP, a UDP-based reliable file transfer protocol, was
designed for multicast environments which have to address
these same issues, and it has done so successfully. Developed
by the Naval Research Lab in the mid 1990’s, MDP is now in

daily use by both the US Post Office and the DoD. The code
is freely available from NRL’s MDP website2, and runs on
multiple platforms.
MDP is implemented in two major pieces: A protocol library
and a file transfer application. The library embodies all of the
MDP protocol logic, and is accessed through a well-defined
application program interface (API)[5]. The application
program provides the interfaces to the user, the file system,
and the protocol library. This modular approach allows the
possibility of tailoring the application for specific
requirements while maintaining interoperability with all other
MDP implementations.
Although developed specifically for reliable file transfer in a
multicast environment, MDP has had to address and solve the
issues of channel utilization, delay tolerance, noise tolerance,
asymmetry, unidirectional links, and link intermittency.

Bandwidth Utilization

The MDP protocol is implemented using UDP packets. UDP
is a connectionless transport protocol designed to operate
over IP. Its primary functions are error detection and
multiplexing. UDP does not guarantee the delivery or order of
packets, but guarantees that if a packet is ever delivered with
errors, such errors will be detected. Because the UDP format
is simple, it has a low overhead. This results in a very efficient
protocol. MDP’s bandwidth utilization, calculated as file-
size/total-bits-transferred, can be as high as 90%. Because
this number is calculated by using the total bits transferred
over the link, it includes all overhead from all sources, not
just MDP’s overhead. In addition, the MDP file transfer
application provides the ability to throttle transfers to a
specified average bitrate.

Delay Tolerance

TCP is a delay sensitive protocol, due to its need to establish
a “connection” with a three-way handshake, and to
acknowledge every two packets sent. UDP, on the other hand,
is a “send and forget” protocol. This makes it completely
delay insensitive. By using UDP, and maintaining it’s own
internal timers, MDP has been designed to operate with large
round-trip-time delays, on the order of hours or days.

Noise Tolerance

On an IP based space link, noise manifests itself as dropped
packets, usually due to cyclic-redundancy-check (CRC)
failures. MDP has two mechanisms for handling this:
retransmissions and application-level reed-solomon FEC.
When the MDP client on the receiving side of a transfer
detects that it has missed one or more packets, it sends an
aggregated Negative Acknowledgement (NACK) back to the
sender, who will automatically retransmit the lost packets. In
addition, in a highly errored environment, MDP has the option
of proactively adding additional reed-solomon FEC symbols
to the transfer at the application layer. These can be used to
reconstruct damaged or lost packets without requesting
retransmission. The amount of FEC added is selectable, and
should be based on a study of the trade-offs between the
overhead of retransmissions vs the overhead of additional
FEC, at a particular error rate.

2 http://pf.itd.nrl.navy.mil/projects/mdp/

High Link Asymmetry

Because MDP is NACK based rather than ACK based, it is
extremely conservative of the uplink channel, maintaining at
least a 1000:1 downlink/uplink ratio, even in the presence of
a 10E-5 BER. Ratios of 10,000:1 and beyond are common.

Unidirectional Link Capability

By design, the MDP protocol has loose coupling between the
downlink of data and the uplink of NACKs. This means that
the sender does not wait for NACKs while downlinking a file.
And, thanks to MDP’s use of a connectionless UDP transport,
the NACKs can even be segregated into a different contact!
This means that an MDP server onboard a spacecraft can
make use of the much more readily available “downlink only”
contacts to get the bulk of the data downlinked, and make use
of a later “bidirectional” contact to uplink any pending
NACKs and downlink the retransmissions. MDP also has an
“Emissions Control” (EMCOM) mode where the client never
requests retransmission, and simply makes a best-effort
attempt to receive the file.

Intermittent Links

Again, because of the loose coupling and delay insensitivity,
MDP can begin the transfer of a file during one contact, and
complete it on subsequent contacts.

5. END-TO-END DATA FLOW ARCHITECTURES
The MDP application is a single program that can be operated
as either a client or a server. The MDP server is designed to
utilize a “hot directory” concept, where new files arriving in
the “hot directory” are automatically queued for transfer. The
MDP client passively receives files that are “pushed” to it by
the server, and has the capability to hand-off the received file
to another arbitrary application upon completion. This section
will briefly examine two possible MDP end-to-end data flow
architectures, but a detailed discussion is beyond the scope of
this paper. A more complete discussion of end-to-end data
flow scenarios can be found in the paper “Internet Data
Delivery for Future Space Missions”[6].

Direct to User

In this configuration, a single MDP server runs on the
spacecraft, and the MDP client runs in the end user facility,
such as the Mission Operations Center (MOC) or the Science
Operations Center (SOC). See Figure 1. In addition, multiple
simultaneous clients are possible, utilizing MDP’s multicast
capability. Using multicast to ship the data to multiple clients
is desirable because any needed packet replication is taken
care of by the routers on the ground network, never by MDP.
In a multicast configuration, the clients can be a mix of
EMCON and non-EMCOM, where only the “primary” non-
EMCON clients are expected to send back a “file received”
acknowledgement.

Store and Forward

In this configuration, shown in figure 2, a single MDP server
runs on the spacecraft, sending to a single MDP client at the
groundstation. Files are stored at the groundstation for
subsequent transfer to end users, possibly at a different time
and at a different data rate from the downlink. Again, a mix
of “primary” and “best effort” clients are possible.

6. MDP PARAMETRIC STUDY
In 2001, we performed a parametric study of MDP in a
simulated space link environment. The purpose was to
characterize MDP’s performance under a wide range of
conditions, including ones that are typical for many space
missions.

Independent Variables

During the test, four independent variables were varied, one at
a time, for two different test series3. For series 1, these were:

1. Data bitrates: 128K, 256K, 512K, 1M, 2M
2. File sizes: 1MB, 2MB, 4MB
3. Bit Error Rates: 0, 1E-8, 1E-7, 1E-6, 1E-5
4. Round trip delay: 0mS, 10ms, 100mS, 500mS

3 For both test series, the uplink was constrained to 2 Kbits/sec.

For test series 2, these were:
1. Data bitrates: 1M, 2M
2. File sizes: 5MB, 50MB
3. Bit Error Rates: 0, 1E-8, 1E-7, 1E-6, 1E-5
4. Round trip delay: 0mS, 10ms, 100mS, 500mS

Dependent Variables

After the tests, two dependent variables were plotted. These
were:

1. Bandwidth Utilization
2. Link Asummetry

Test Setup

An automated test environment, shown in fig 3, was
developed to perform the file transfers and collect packet
level statistics at the server, router and client. A
programmable Adtech channel simulator was inserted in the
serial communications link to insert delay and noise. The test
control software was resident on the same machine as the
MDP client, but used separate communications paths for
control so as not to introduce error into the measurements.

Test Results

A summary of the test results appears in figures 4 and 5. A set

Space craft

MDP
Se rver

Grounds tation MOC

MDP
Cli ent

MDP
Cli ent

SOC

Fig. 1. MDP Direct-to-User Architecture

Space craft

MDP
Se rver

Grounds tation

MDP
Client

MDP
Server

MOC

MDP
Client

MDP
Client

SOC

Fig. 2. MDP Store-and-Forward Architecture

PC104
Spacecraft

Adtech Channel Simulator

Cisco Router
Linux

Workstation

MDP
Server

MDP
Client

Automated
Test

Control

Errors
Delay
Rate

Fig. 3. Test Setup

of spreadsheets containing the complete results of the test is
available for download4.
One of the most notable findings is that bandwidth utilization
and link asymmetry are essentially independent of round trip
time (delay). This behavior for bandwidth utilization is in
marked contrast to TCP-based protocols, such as FTP, which
run into a performance “wall” once the delay-bandwidth
product exceeds the size of their window buffer.
The large values for link asymmetry mean that even a mission
with 10E-5 BER and a 2 Kbit/sec uplink can support
downlinks of 1 Mbit//sec. And at a more typical5 BER of
10E-7 (after FEC), downlinks of 10 Mbits/sec are possible.
Although this is important for near-term missions which must
accommodate a legacy 2 Kbit/sec uplink from existing
groundstations, it is less of a concern for TDRSS based
missions, which can support a symmetrical uplink/downlink if
desired.

4 http://ipinspace.gsfc.nasa.gov/documents/
5 Based on measurements of actual Wind/Polar mission data.

7. MDP FLIGHT TESTS
MDP will be flight tested in the summer of 2002 on the
Communication and Navigation Demonstration on Shuttle
(CANDOS) mission. This HitchHiker mission is part of a 16
day shuttle flight, and has its own independent transceiver
which will be used to directly contact either gorundstations or
TDRSS, independent of the shuttle comm system. CANDOS
will demonstrate basic IP connectivity on the space link,
mobile-IP routing, and reliable file transfer using MDP. File
transfers will be conducted under realistic conditions,
including intermittent and “downlink only” contacts. The
CANDOS mission is discussed in more detail in the paper
“Space Communications Demonstration Using Internet
Technology”[7].

8. ENHANCEMENTS TO THE MDP APPLICATION
In the course of our investigations, we identified several
potential enhancements to the MDP application that would
improve its ease of use in a spacecraft environment. These
enhancements are primarily associated with improving the
ease of automatically handling intermittent contacts.

Runtime Control Interface

Currently, the MDP application can only set its runtime
parameters via commandline switches set at its initial
execution. This requires stopping and restarting the
application each time a change is needed to one of these
parameters. Almost all of them are settable through a call to
the MDP protocol library using the documented API. It would
be a straightforward addition to the MDP application to have
it open a “commanding” socket, and accept runtime
commands to alter these parameters on the fly.

Runtime Datarate Throttle Control

MDP has the ability to throttle it’s maximum bitrate. This is
a necessary feature for applications built on top of UDP, as
UDP does not incorporate any flow control. Giving the MDP
application a command to dynamically change its bitrate
would allow it to adapt to changing spacecraft modes without
having to stop and restart the server.

Checkpoint / Restore

By adding a pair of commands to save all of MDP’s internal
state into a file, and restore it later, we would gain the ability
to resume an incomplete transfer that was interrupted by a
reboot of the processor, such as when the spacecraft goes into
a “safehold” mode.

Pause / Resume

This pair of functions would be used to manage the MDP
server and client by pausing it when the spacecraft was out of
contact with the ground. In its “paused” state, all MDP’s
timers would be frozen, but its other state information would
be preserved. This would prevent the server and client from
uselessly sending either data packets or NACKS while out of
contact. This functionality can currently be provided by using
the host operating system to suspend the MDP application,
but this approach requires external scripts to make it happen.

Datarate=2 Mbits/sec Filesize=50 MBytes

0

5000

10000

15000

20000

25000

30000

0 100 200 300 400 500
RTT (ms)

0.0E+00

1.0E-08

1.0E-07
1.0E-06

1.0E-05

Fig. 5. – MDP Link Asymmetry vs. RTT

Datarate=2 Mbits/sec Filesize=50 MBytes

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

0 100 200 300 400 500
RTT (ms)

0.0E+00

1.0E-08

1.0E-07
1.0E-06

1.0E-05

Fig. 4. – MDP Bandwidth Utilization vs. RTT

React to Transceiver State

This capability may just be a refinement of the Pause/Resume
commands. It would allow notifying MDP of the status of
the transmitter and the receiver separately. MDP’s response
to XmitOff and RecvOff commands would be different,
depending on whether it was running as a server or as a client.
 For example, a client with its transmitter off but its receiver
on would continue accepting data packets sent by the server,
but would accumulate and defer any NACKS needed until
such time as the transmitter was on.

9. STANDARDIZATION ACTIVITIES

RMT Working Group

The Internet Engineering Task Force (IETF) has established
the Reliable Multicast Transport (RMT) working group. The
purpose of the RMT is to standardize reliable multicast
transport. Its efforts focus on one-to-many transport of large
amounts of data. This working group expects to initially
standardize three protocol instantiations, one each from the
following three families:

1. A NACK-based protocol
2. A Tree-based ACK protocol
3. An “Asynchronous Layered Coding” protocol

that uses Forward Error Correction

MDP falls into the first class. The authors of MDP are active
in the RMT and have submitted MDP as the basis for their
standard NACK Oriented Reliable Multicast (NORM)
protocol.

NORM

The NACK Oriented Reliable Multicast protocol is currently
defined in a set of Internet-Drafts dated November 2001 and
March 2002. It is essentially based on MDP, with some
additional generalization to support arbitrary types of FEC.
MDP is specific in its use of Reed-Solomon for application-
level FEC, whereas NORM allows the use of standardized
FEC “building blocks”. These functional “building blocks”
are at the core of the RMT working group’s efforts, because
many of the functions (such as FEC) have applicability across
all three classes of Reliable Multicast Transports. Work in
the NORM area of the RMT is active and ongoing.

10. FUTURE WORK

More MDP Flight Experience

MDP is currently being considered for use on several
upcoming space missions, including the Global Precipitation
Mission (GPM), and the Solar Dynamics Observatory (SDO).
 The OMNI project is actively working with these, and other
missions, to provide systems engineering support for the
preliminary design of their end-to-end IP infrastructure.

Implement and Fly Enhancements

Work is currently underway to implement some of the
enhancements to the MDP application that were proposed in
section 8. These enhancements will be incorporated into a
flight-ready MDP package before the year’s end.

Hardware Assisted High-Rate Transfers

Later this year, preliminary work will begin on designing an
approach for providing hardware-assisted high-rate data
transfers. The plan is to identify that portion of the MDP
protocol that can be incorporated into hardware without
compromising the layered approach of an IP architecture.

Status Updates

Information on the results of future MDP activities will be
posted on the OMNI project web site at
http://ipinspace.gsfc.nasa.gov/.

11. CONCLUSIONS
MDP is well suited to provide an inexpensive, reliable,
standard, and interoperable mechanism for transferring files in
the space communication environment. It successfully
addresses the issues of limited bandwidth, noise, delay,
intermittent connectivity, link asymmetry, and one-way links.
MDP’s high link asymmetry tolerance makes it particularly
well suited to Earth-Science missions with high downlink
requirements and limited uplink capabilities.

12. ACKNOWLEDGEMENTS
The research described in this paper was carried out by
personnel from Computer Sciences Corporation working for
NASA’s Goddard Space Flight Center under contract GS-
35F-4381G S-43981-G, with additional efforts and support
contributed by individuals from various GSFC organizations.
 The work was funded by NASA’s Earth Science Technology
Office (ESTO). The authors would like to thank Joe Macker
and Brian Adamson of NRL for the development of MDP,
Dave Israel and GSFC code 450 for their pioneering work on
the CANDOS project, and ITT Industries for the development
of the Low Power Transceiver (LPT) used on CANDOS.

REFERENCES

[1] K Hogie, E Criscuolo, R Parise, “Link and Routing Issues
for Internet Protocols in Space”, 2001 IEEE Aerospace
Conference, Big Sky MT, March 2001

[2] E Criscuolo, K Hogie, R Parise, “Transport Protocols and
Applications for Internet Use in Space”, 2001 IEEE
Aerospace Conference, Big Sky MT, March 2001

[3] Consultative Committee for Space Data Systems, "Space
Communications Protocol Specification (SCPS) -
RATIONALE, REQUIREMENTS, AND APPLICATION
NOTES", CCSDS 710.0-G-0.3, April 1997

[4] A Welch, D Brooks, D Beering, D Hoder, M Zernic,
"Experimental results of running TCP/IP over ATM on NASA
ACTS HDR", NASA/GRC, 1997,
http://acts.grc.nasa.gov/library/docs/gsn/welchpaper.pdf

[5] J Macker, R B Adamson, “The Multicast Dissemination
Protocol (MDP) Toolkit”, IEEE, 1999,
http://manimac.itd.nrl.navy.mil/MDP/MdpToolkitOverview.ps.gz

[6] J Rash, R Cassanta, K Hogie, “Internet Data Delivery for
Future Space Missions”, NASA Earth Science Technology
Conference, Pasadena CA, June 2002

[7] D. Israel, K Hogie, R Parise, E Criscuolo, "Space
Communications Demonstration Using Internet Technology",
International Telemetering Conference ITC/USA 2002, San
Diego CA, October 2002

James Rash – Goddard Space Flight
Center – Mr. Rash currently manages the
Operating Missions as Nodes on the
Internet (OMNI) project in the Advanced
Architectures and Automation Branch at
NASA’s Goddard Space Flight Center.
He also leads development of formal
methods capabilities with respect to
agent-based systems. Previous
assignments have included development of systems applying
artificial intelligence and evolutionary programming
techniques.

Edward Criscuolo Jr. joined Computer
Sciences Corp. in 1991 as a Senior
Computer Scientist working for the
Goddard Space Flight Center. In that
time, he has been the task lead for a
number of spacecraft ground system
projects that span many aspects of
Goddard space missions, including
Planning & Scheduling systems, spacecraft command
management, and level-0 processing of telemetry and
science data. In 1999, Mr. Criscuolo joined the OMNI
project as a senior project member, where his duties include
systems analysis, systems engineering, top-level design,
prototype development, and backup technical lead.

Keith Hogie - Computer Sciences
Corporation - Mr. Hogie has an
extensive background in designing and
building satellite data processing
systems, control centers, and networks
at GSFC. He has developed ground
data processing systems and control
centers for over 14 spacecraft over the
last 25 years at NASA/GSFC, and led the development of the
NASA Internetworking Laboratory Environment in 1990.
He is the technical leader of the OMNI project at GSFC
where he is applying his networking and satellite
background to develop and demonstrate new
communication technologies for future space missions.

Dr. Ron Parise - Computer Sciences
Corporation - In 1984, Dr. Parise was
selected as a payload specialist
astronaut and was involved in mission
planning, simulator development,
integration and test activities, flight
procedure development, and scientific
data analysis. He has logged 615 hours
in space as a member of the STS-35 and STS-67 crews. In
1996 Dr. Parise assumed a communications engineering
support role for Mir, International Space Station (ISS), and
the X-38 project. In 1997 Dr. Parise also began working
with the OMNI project as a scientific liaison and systems
architect.

