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CLARREO Requirements

• A key point to understanding Earth’s climate is 
the energy balance between the Earth and 
Sun

• 2007 NRC Decadal Survey[1] and the 
Committee on Earth Science and Applications 
from Space states:
– The required accuracy of radiative 

measurements of the Earth is 0.2%.
– The central objective is to create an accurate, 

long term measurement
– SI traceable benchmark

• Can cross-calibrate with other on-orbit instruments 
to increase accuracy of climate record

• Data will be used to develop operational forecast 
models

• Provide a framework for future policy decisions
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Current Satellite Limitations

• Today’s measurement accuracy is 
approximately 2%
– Satellite limitations consist of:

• Traditional methods of pre-launch calibrations [2,3]

• On-board calibration systems [4,5]

• Vicarious calibrations [6-8]
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The Proposed Hyperspectral Imager

• We have the ability to observe 
the Sun to approximately 0.1% 
accuracy [9,10]

• The proposed CLARREO 
hyperspectral imager transfers 
the solar ~0.1% accuracy to an 
Earth-viewing instrument [11]

– Instrument will operate in the 
350-2300 nm region

– Cross-calibration is accomplished 
through direct solar viewing

– Requires nearly 5 orders of 
magnitude attenuation

Prototype Hyperspectral Imager

Focal Plane 
Array

Offner grating 
spectrometerInput apertures 

and filters
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telescope



ESTF 2011
Pasadena, 21 June 2011 Paul Smith - p. 5A Solar Irradiance Cross-Calibration Method Enabling Climate Studies Requiring 0.2% Radiometric Accuracies

The Attenuation Methods

• Reduction of input aperture area 
(aperture attenuation)
– Can achieve over 3 orders of magnitude 

of attenuation
• Reduction of detector integration time 

(integration time attenuation)
– Can achieve 1.9 orders of magnitude of 

attenuation
• Inserting attenuation filters into light 

path
– Can achieve 1 order of magnitude of 

attenuation
• All attenuation methods are relative 

measurements.  No direct 
measurement of the Solar or Earth 
irradiance will be made.
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Experimental Setup

• 18 Watt, 532 nm laser is used to 
generate very uniform Gaussian field
– Beam propagates 2 m after spatial filter
– High power spatial filter expands beam by 

a factor of 130
– 1/e2 diameter is 29 cm

• Collimating lens is placed in beam 
directly in front of hyperspectral 
imager

• Facility is capable of generating 
highly uniform beam with typical 
solar power levels (1.88 mW/cm2)
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Active Stabilization

• With such a high magnification factor, small 
perturbations on input optics (thermal, air 
currents) cause large deviations in beam 
position at hyperspectral imager.

• Three types of active stabilization are 
employed:
– Quad diode positioning feedback sensors 

control a piezo steering mirror placed 
upstream of the spatial filter (5 Hz bandwidth)
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Active Stabilization

• With such a high magnification factor, small 
perturbations on input optics (thermal, air 
currents) cause large deviations in beam 
position at hyperspectral imager.

• Three types of active stabilization are 
employed:
– Quad diode positioning feedback sensors 

control a piezo steering mirror placed 
upstream of the spatial filter (5 Hz bandwidth)

– Laser intensity stabilizer monitors laser power 
and adjusts variable attenuator to 
compensate for power fluctuations (1 kHz 
bandwidth) Gaussian Beam
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Active Stabilization
• With such a high magnification factor, small 

perturbations on input optics (thermal, air 
currents) cause large deviations in beam 
position at hyperspectral imager.

• Three types of active stabilization are 
employed:
– Quad diode positioning feedback sensors 

control a piezo steering mirror placed 
upstream of the spatial filter (5 Hz bandwidth)

– Laser intensity stabilizer monitors laser power 
and adjusts variable attenuator to 
compensate for power fluctuations (1 kHz 
bandwidth)

– A wedged beam splitter placed directly in 
front of the hyperspectral imager input 
aperture is used to pick off the center 2 mm2

portion of the beam, which is monitored by a 
NIST calibrated trap detector (with known 
gain and uncertainty over 7 orders of 
magnitude)
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Active Stabilization

• With such a high magnification factor, small 
perturbations on input optics (thermal, air 
currents) cause large deviations in beam 
position at hyperspectral imager.

• Three types of active stabilization are 
employed:
– Quad diode positioning feedback sensors 

control a piezo steering mirror placed 
upstream of the spatial filter (5 Hz bandwidth)

– Laser intensity stabilizer monitors laser power 
and adjusts variable attenuator to 
compensate for power fluctuations (1 kHz 
bandwidth)

– A wedged beam splitter placed directly in 
front of the hyperspectral imager input 
aperture is used to pick off the center 2 mm2

portion of the beam, which is monitored by a 
NIST calibrated trap detector
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Aperture Area Attenuation Measurement

• Input apertures are aluminum
• Aperture edge is precision diamond 

turned
• The amount of optical power entering 

system is directly proportional to the 
input aperture area
– This relationship, and the uncertainty in 

the associated measurement, are 
quantified by measuring the power passing 
through the aperture

– Only a relative power measurement is 
used, and accuracy will be determined by a 
comparison with a NIST measurement of 
the aperture area

• Three aperture sizes are used: 20 mm, 8 
mm, and 0.5. mm diameters

2.0 m

Hyper-
spectral 
Imager

Photodiode

0.5 mm diameter

20 mm diameter

8 mm diameter

Actual system apertures

Aperture 
Diameter (mm)

Aperture Area 
(mm2)

Area Uncertainty 
(ppm) (k=1)

19.9862 313.72454 35
7.9732 49.9290 50
0.51542 0.20865 633
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Power Ratio Uncertainties

• The power measurement 
standard deviation (after 100 
averages) is 12 ppm

• An irradiance non-uniformity 
correction is applied to the 
power ratio measurements
– In a Gaussian field, the 0.5 mm 

aperture has a higher irradiance 
than the 20 mm aperture
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Power Ratio Uncertainties

• A camera is placed at the input 
aperture location to measure the input 
irradiance
– An irradiance correction is calculated at 

every pixel on camera

• Uncertainty in the location of the 
center of the beam (estimated as a 3 x 
3 mm box in the center of the 
aperture) can be used to calculate an 
uncertainty in the irradiance correction

• Combined 20 mm to 0.5 mm 
attenuation uncertainty is 0.07%

Aperture 
Ratio

NIST Area Ratio ±
Uncertainty (k=1)

Power Ratio ±
Uncertainty (k=1)

20/8 6.2834 ± 31 ppm 6.2834 ± 200 ppm
8/0.5 239.2954 ± 317 ppm 239.1930 ± 673 ppm

Power Ratio Measurements and Uncertainties
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Integration Time Attenuation
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CMOS FPA

• The amount of detected power is inversely 
proportional to sensor integration time
– Sensor is a CMOS FPA (12-bit Photon Focus 

MV1-1312-160) with global shuttering 
capabilities

– Sensor exposure range extends from 0.01 to 
420 ms (4.6 orders of magnitude if shown to 
have linear response)

• Measurement is made by increasing laser 
power (monitored on trap detector) while 
decreasing sensor integration time in order 
to maintain the same power level on the 
sensor
– Measurement is relative
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Integration Time Attenuation

• The amount of detected power is inversely 
proportional to sensor integration time
– Sensor is a CMOS FPA (12-bit Photon Focus 

MV1-1312-160) with global shuttering 
capabilities

– Sensor exposure range extends from 0.01 to 
420 ms (4.6 orders of magnitude if shown to 
have linear response)

• Measurement is made by increasing laser 
power (monitored on trap detector) while 
decreasing sensor integration time in order 
to maintain the same power level on the 
sensor
– Measurement is relative

• Integration time deviation from linear is 
302 ppm over 2 orders of magnitude 
attenuation (standard deviation across all 
exposure time linearity residuals)
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Integration Time Attenuation Uncertainty

• Integration time measurement 
uncertainty is determined by 
standard deviation in repeated 
measurements
– Uncertainty in integration time is 

360 ppm
• Measurement linearity error and 

uncertainty increase at lower 
signal levels
– Indicates a gain nonlinearity which 

can be compensated during post 
processing

– If signal levels are kept above 1000 
DN (digital number), uncertainty is 
< 0.1%



ESTF 2011
Pasadena, 21 June 2011 Paul Smith - p. 17A Solar Irradiance Cross-Calibration Method Enabling Climate Studies Requiring 0.2% Radiometric Accuracies

Filter Attenuation

• Absorptive glass filter is used
– Bulk effect is more stable than thin 

film
– Lower reflected light
– Simpler dependence on angle of 

incidence

• Lunar on-orbit relative 
calibration
– Succession of filter in/filter out 

measurements radiance 
measurements

– Track possible degradation
– Low light level (compared to solar 

irradiance) limits attenuation factor 
to one order of magnitude

Hyper-
spectral 
Imager

FPA

Input Aperture

Filter

Lunar Filter Calibration
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Filter Attenuation Measurements
• Filter attenuation is wavelength dependent – requiring 

the use of a broadband source
– Gaussian laser beam is replaced by white light LED

• Measured long-term power stability is 190 ppm

– Relative attenuation measurements have been made from 
450 nm to 725 nm with LED

– Relative attenuation measurements have been made from 
475 to 1025 nm with super continuum source at NIST’s 
Hyperspectral Image Projection Facility [13]
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Filter Attenuation Uncertainties

• Uncertainty in the measurement is determined by deviation 
of each point from a smooth curve
– Uncertainty is measured at 0.06%
– Angular and thermal uncertainties will be estimated at a later date

Ratio: Filter in/Filter Out
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Summary and Conclusions

• The amount of attenuation 
required for both solar and Earth 
viewing (5 orders of magnitude) 
has been achieved through 3 
techniques:
– Reduction of input aperture size

• 3 orders of magnitude attenuation
• Measurement uncertainty of 0.07%

– Reduction of sensor integration 
time
• 2 orders of magnitude attenuation
• Measurement uncertainty of 0.04%

– Addition of absorptive filter
• 1 order of magnitude attenuation
• Measurement uncertainty of 0.06%

– Total root-sum-square uncertainty is 
0.14%

• Combined attenuation from all 3 
techniques is 10 times more 
attenuation than necessary
– Still need to verify 6 orders of 

magnitude attenuation in full 
system

• Full system tests to verify root-
sum-square uncertainty are in 
progress
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